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Abstract—An iterative algorithm for soft-input soft-output
(SISO) decoding of classical algebraic cyclic block codes is pre-
sented below. Inspired by other approaches for high performance
belief propagation (BP) decoding, this algorithm requires up to
10 times less computational complexity than other methods that
achieve similar performance. By utilizing multiple BP decoders,
and using random permutation taken from the permutation
group of the code, this algorithm reaches near maximum like-
lihood performance. A computational complexity comparison of
the proposed algorithm versus other methods is presented as well.
This includes complexity versus performance analysis, allowing
one to trade between the former and the latter, according to ones
needs.

Index Terms—TIterative decoding, soft-decision decoding, per-
mutation group, message-passing algorithm.

I. INTRODUCTION

TERATIVE decoding of classic codes has created much
Iinterest in recent years. These codes, which have been
known for decades and are being used nowadays in many
applications, are sometimes referred to as high density parity-
check codes (HDPC) [1], to differentiate them from the low
density parity-check codes (LDPC). It is well known that
iterative methods for decoding LDPC codes achieve similar
performance to Maximum Likelihood (ML) decoding, due to
the sparseness of its parity check matrix.

By nature, classical codes have a very dense matrix, with
small girth and high number of short cycles. Therefore,
performing standard iterative decoding on them usually leads
to poor results. Jiang and Narayanan [1], the first to crack
the barrier, demonstrated a modification to the regular Sum-
Product (SP) decoding algorithm, which produces a better
result than the standard SP algorithm. The innovation in their
work was the adaptation of the parity check matrices from
iteration to iteration, based on the Log Likelihood Ratio (LLR)
of the incoming signal. As nice as it may be, the hardware
realization of Jiang and Narayanan decoder is a complicated
task, due to the Gaussian elimination process involved in every
SP iteration.

From an entirely different direction emerged the work of
Feldam, Wainwright, and Karger [2], [3], who interpreted the
parity check matrix as a set of constraints, and used linear
programming methods to decode the obtained codeword.
Their work indicated that the linear programming decoder
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(LPD) acts on a fundamental polytope that is created by
the constraints of the parity check matrix. The polytope
has vertices that are valid codewords and vertices that are
invalid codewords. Linear programming decoding eventually
settles on one of the vertices, but not necessarily on a valid
codeword, referred to as pseudo codewords (PCW) [4], [5].
The resemblance in performance and the similar decoding
behavior of LPD and belief propagation (BP) have led to the
utilization of PCW weight and distribution, in order to evaluate
and improve decoding performance.

Kelley and Sridhara [4] have demonstrated that enriching
the parity check matrix structure, by adding redundant rows,
improves its PCW weight distribution and decoding perfor-
mance. Although this conclusion contradicts ones intuition,
which would suggest that adding more rows to the parity
check matrix would increase the number of short cycles in
the graph, and decrease its decoding performance. Hereafter,
a parity check matrix H for an [n, k] linear block code C, with
more than (n—k) rows will be referred to as a redundant parity
check matrix.

This letter presents a new algorithm for iteratively decoding
classical codes. The algorithm was inspired by the publica-
tions presented by Halford and Chugg [6], who introduced
the Random Redundant Iterative Decoding (RRD) decoder,
and by Hehn et al. [7], who introduced the Multiple-Bases
Belief-Propagation (MBBP) decoder. Both algorithms use a
redundant parity check matrix, although in different ways

While the MBBP decoder defines n x n parity check matri-
ces derived from the minimum weight codewords of the dual
code, the RRD uses the “temporal” redundant parity check
matrix, by altering the basic parity check matrix throughout
the decoding process. The different structure of the redundant
matrices of the decoders affects the decoding computational
complexity.

The outline of this paper is as follows. In Section II we
present the new decoding algorithm, as well as a geometric
interpretation for it. Section III analysis and compares the
computational complexity of the decoders. Section IV includes
simulation results of some algebraic block codes and Section
V contains concluding remarks.

II. PROPOSED DECODING ALGORITHM

This section presents the proposed decoding algorithm.
We first offer a very brief description of the RRD decoder
and the MBBP decoder. All codes discussed in this letter
are binary codes. Therefore, we can assume without loss of
optimality that the decoding algorithms base their decision on
the log-likelihood ratio (LLR) vector, which is provided by
the observed channel output sequence.
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The “temporal” redundancy used by RRD is achieved by
using permutation group of C, Per(C). Per(C) is defined in [8]
(also referred as automorphism group) as a set of permutations
of coordinate places that send C into itself. The permutation
group of many classical block codes are known ([8]) and
can be used to generate the matrix redundancy. By randomly
choosing elements from Per(C), RRD decoder changes the set
of constraints that are used temporally. This process can also
be seen as changing the polytope on the move, while trying
to converge to a solution. In [6], it is also demonstrated that
decoding with the permuted soft input vector is equivalent to
decoding over the permuted parity check matrix. This principle
is to be used in this letter and all permutations referred to
below are actually permutations over the input LLR values.
RRD also utilizes a damping coefficient o (positive number
which less than one) to scale the LLR values. The decoder
starts with a small damping coefficient and it is increased from
decoding iteration to another until it reaches a valid codeword.

The MBBP decoding algorithm utilizes ¢ parallel iterative
decoders, where each of the decoders uses a different parity-
check matrix Hy. MBBP parity check matrix Hy, for a certain
cyclic code C, is created by partitioning the set of codewords
of its dual code C* into sets consisting only of cyclic shifts of
one codeword. One of these codewords represent that group
and referred as the cyclic group generator (CGG). The CGGs
with Hamming weight equal to the minimum distance of the
dual code d*, is to be used to construct n x n parity check
matrices Hp. The possible number of the Hj parity check
matrix depends on the size of the CGG and varies with the
code.

Each decoder performs at most ¢ iterations, and the hard
decision of its output is denoted as cy. In case some of
the decoders converged to a valid codeword, the resultant
codewords are used along with a least metric selector (LMS)
to choose the most likely codeword. In case none have
converged, all output codewords are used with LMS.

A. New decoding algorithm - mRRD

The new decoding algorithm attempts to benefit from both
of the above two approaches. It utilizes ¢ iterative decoders
in parallel, in which each decoder uses the same parity check
matrix (sizes (n—k) x n), but with random permutation. Initial
permutation is selected randomly at the beginning of each
decoding iteration. The damping coefficient a no longer plays
a role in the decoding algorithm as in RRD, and it stays fixed
throughout the decoding process and is set to some empirically
chosen value. Each ¢-th decoder makes use of two loops:

1) Outer loop performed I, times: If we receive a valid
codeword, we perform hard decision on the current
LLR, perform inverse permutation © ! on the received
codeword, and exit. If that is not the case, we alternate
the current LLRs using a random permutation €, and we
accumulate the total permutations in ©.

2) Inner loop performed I; times - the basic SP iterative
decoding process.

As in MBBP, an LMS is then used to select the most likely
codeword, and in case none of the decoders converged, all
output codewords are used with LMS. We choose to call
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this the modified RRD (mRRD) algorithm, due to its close
relationship with the RRD decoding algorithm The algorithm
is given as follows:
S:=10
for /:=1,...,l do
w <« LLR(y)
6 — random element of Per(C)
Apply 0 to w
O —0
forlgigglg do
Perform I; decoding iterations on TG(H )
place soft output in w’ such that w «— w + w’
¢, = Hard Decision (w)
if ¢,- HT =0 then
S:=5U/
Apply ©71 to w and &
Break out of for loop
end if
6 — random element of Per(C)
Apply 0 to w
0—6-0
end for
end for
if S =0 then
S:={1,...,0l}
end if
&= argmax,cs Y0 vy — o

B. Geometric Interpretation of mRRD

Richardson was the first to give a geometric interpretation
to the iterative decoding process [9]. Jiang and Narayanan [1]
gave a very similar interpretation, in which they presented the
decoding process as a gradient descent optimization algorithm.
They defined a potential function J(H,T) as a function of the
parity check matrix, which is being used for decoding H, and
the LLR values of the received word T'. They also stated that
the gradient descent updating rule can be written as follows:

I(lJrl) - I(l) o OCVJ(H,Z)

When each decoder reaches a valid codeword, we can say
that the gradient descent algorithm reached an equilibrium
point. By using the permutation group to change the parity
check matrix, we change the potential J(H,T) and its gra-
dient VJ(H,T) along the decoding process, thus preventing
the decoder from settling on a false equilibrium point (that
can also be interpreted as a pseudo codeword (PCW)). The
proposed algorithm takes advantage of the fact that the poten-
tial J(H,T) has many local minimas. Performing gradient
descent on a random potential increases the probability of
reaching a better solution in one (or more) of the decoders,
thus achieving better overall performance.

III. COMPLEXITY COMPARISON

Realization complexity of iterative decoders has been
widely studied in many publications (for example [10]). Gen-
erally speaking, all expressions are given as a function of
the number of edges of the bipartite graph induced by the
code. Therefore, a comparison between two different decoders,
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which use different parity check matrices, is achieved by
normalizing the number of edges of their graphs.

RRD and mRRD use the same parity check matrix. There-
fore the decoder’s complexity is evaluated by averaging the
number of sum-product iterations performed until a valid
codeword is reached, or until the number of iterations reaches
a certain limit in case the decoder doesn’t converge to a
codeword. A single iteration is defined as the action of sending
messages from variable nodes to check nodes, processing these
messages at the check nodes, and sending back new messages
from the check nodes to the variable nodes.

MBBP parity check matrix Hp for a certain code C(n, k),
has a size of n x n. By normalizing MBBP’s relative com-
plexity, we can set all decoders on the same scale. Table I
displays the relative complexity for some popular codes that
have been investigated in this letter. The number of edges in
MBBP graph is d;-, *n. The relative complexity is the ratio
between the number of edges in MBBP and RRD (or mRRD)
graphs.

MBBP’s and mRRD’s complexity can be compared by mul-
tiplying MBBP’s average number of sum-product iterations
with the relative complexity figure

IV. SIMULATION RESULTS

This section presents the empirical investigation of mRRD’s
performance. The results presented are for the BCH[63,45,7]
and [24,12,8] extended Golay code. Similar performances
have been observed for other codes, such as BCH[31,21,5],
BCH[63,36,11], BCH[63,39,9] and BCH[63,45,7]. We present
the bit error rate (BER) performance and the computation
complexity of various decoders discussed in this letter. Our
simulations assume a binary antipodal signaling on an Addi-
tive White Gaussian Noise (AWGN) channel. Each iteration
the codeword was randomly chosen. To generate the set of
the permutation groups, the various codes were taken from
[8], [11] and [12].

Fig. 1 displays simulation results for the BCH[63,45,7] code
and demonstrates the benefits of the mRRD decoder in terms
of performance and complexity:

o The mRRD decoder, which employs three parallel de-
coders, gives the same performance as an RRD decoder
with less than 1/10 of the complexity at E}, /Ny = 3dB
and 1/3 of complexity at E,/Ny = 7dB.

o« The mRRD decoder, which employs twenty parallel
decoders, has an advantage of 0.25dB in terms of per-
formance relatively compared to the RRD. Furthermore
it requires less computational complexity for Fj, /Ny <
5.5dB.

« The mRRD, with twenty parallel decoders, will cost
seven times more SP iterations than mRRD with three
parallel decoders, while adding just 0.25dB for the
BER.

« The MBBP decoder, which employs three parallel
decoders, provides similar BER results compared to
mRRD decoder, which employs five parallel decoders.
However, MBBP requires 66 SP iteration on the av-
erage, compared to 20 iteration for mRRD (E}, /Ny >

4dB). Considering the relative complexity, MBBP re-
quires ten times more computational power to achieve
the same performance.

« MBBP, as presented in [7], does not implement a
stopping criterion. We believe that adding a simple
stopping criterion to the MBBP decoder may decrease
its complexity. Nevertheless, due to the structure of its
parity check matrix, even with a stopping criterion, the
MBBP will still surpass the RRD/mRRD decoder in its
complexity.

Fig. 2 displays simulation results for the extended Golay
code. Although the focal area around the ML curve is crowded,
one can see that mRRD(20), mRRD with twenty parallel de-
coders, and mRRD(15), achieve the same performance. They
both have an advantage of 0.1dB over MBBP and RRD, which
behave similarly in this case. In terms of complexity, Fig.
2b demonstrates that mRRD(15) requires a reduced number
of iterations (up to 3 times less) for BER values >1le-6.
Fifteen MBBP parallel decoders with 70 decoding iterations,
normalized in accordance with Table I as 1800 iterations,
exceed the number of iterations required by both RRD (40-165
iterations) and mRRD(15) (30-120 iterations).

V. CONCLUSIONS

There is still much mystery as to why iterative decoding
achieves such outstanding performance. This letter discloses
one aspect of this mystery. Combining several decoders that
operate on a dense graph, so that the only difference between
them is the random choice of elements from their permutation
group, leads to near ML performance. Removing the need to
change the decoder’s damping coefficient also adds another
interesting issue for future research. However, despite these
unanswered questions, the presented analysis allows one to
opt between complexity and performance, choosing the best
conditions for the selected application.
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