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Optima l Soft Decision  Block Decoders Based 
on Fast Hadamard T ransform  

YAIR BE’ERY AND JAKOV SNYDER& MEMBER, IEEE 

AMrcrct- An approach for efficient utilization of fast Hadamard trans- 
form in decoding binary linear block codes is presented. Computational 
gain is obtained by employing various types of concurring codewords, and 
memory reduction is also achieved by appropriately selecting rows for the 
generator matix. The availability of these codewords in general, and 
particularly in some of the most frequently encountered codes, is discussed. 

I. INTRODUCTION 

I N THIS PAPER we present an  approach for efficient 
utilization of the fast Hadamard transform (FHT) in 

soft decision (also named analog) maximum likelihood 
decoding of binary linear block codes. Among the rela- 
tively few existing results that involve application of FHT 
for decoding, perhaps the oldest one  is the Hadamard 
transform decoding of first-order Reed-Muller codes pro- 
posed by Green [l]; see also [2]-[6] and  [7, p. 4191. Appli- 
cation of FHT for decoding maximum length shift-register 
codes is presented in [8] and  [9]. Utilization of the Green- 
machine concept for decoding binary block and  convolu- 
tional codes is described by Clark and  Davis in [lo], but 
their procedure is efficient only for low-rate codes. An 
efficient maximum likelihood soft-decision decoding al- 
gorithm based on  trellis description of high-rate block 
codes was conceived by Wo lf [ll]. 

The  various alternative approaches investigated for ob- 
taining optimal soft-decision decoders include the maxi- 
mum likelihood symbol-by-symbol decoding rules [ 121, [ 131  
and  the m inimum mean-square error decoding algorithm 
[14], [15] that uses Fourier and  Hadamard transforms for 
computing certain parameters. Suboptimal soft-decision 
block decoding by implementing reduced trellis search 
is discussed in [16], and  two different suboptimal soft- 
decision decoders [17], [18] apply erasures for reducing the 
number  of candidate codewords. A maximum likelihood 
hard-decision decoding algorithm applicable to certain 
Reed-Muller codes is presented in [19]. Recently, a  new 
method of maximum likelihood hard-decision decoding of 
binary codes was proposed [24]. 
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The  basic algorithm developed in Section II (Algorithm 
A) is slightly more general  but essentially the same as the 
one  described in [lo]. However, the derivation we provide 
is formal even though straightforward. Algorithm A is 
applicable for decoding any binary block or truncated 
convolutional code and  is therefore, in a  sense, universal. 
However, it is inefficient unless the rate of the block code 
is extremely low or the (truncation) length of the code is 
short. In subsequent  sections we develop somewhat more 
complex, but significantly more efficient decoding rules by 
taking into account the structure of the code under  consid- 
eration. In Section III we use zero-concurring (i.e., or- 
thogonal when viewed as real) codewords for reducing 
computational complexity, whereas in Section IV concur- 
ring (more commonly but m isleadingly named orthogonal) 
codewords are emp loyed for the same purpose. The  avail- 
ability of these codewords in general, and  particularly in 
some of the most frequently encountered codes, is dis- 
cussed, and  the efficiency of the various algorithms is 
compared for five particular codes. In Section V an  al- 
gorithm with reduced memory requirement is presented. A 
different approach for reducing computational complexity, 
resembling that of [ll] but without relying on  a  trellis 
diagram, which is applicable also to convolutional and  
combined codes, is presented elsewhere [20]. 

II. THE BASIC ALGORITHM 

Let %?  be  an  (n, k) binary linear block code of length n  
and  dimension k. Assume for a  while that a  codeword is 
transmitted through a  discrete memoryless channel  with 
output alphabet Db and  transition probabilities P,(u) = 
P(ujj), u  E il6, j E GF  (2) and  that the word v = 
( ug, Ul,’ . ., q-1>, uj E K6, is observed at the output. Opti- 
ma l decoding consists of finding a  codeword c = 
cc,, Cl,“‘, c,-1) E %?  that maximizes P(vlc) = 
rI~~~P(uilci), that is, maximizes the a  posteriori probabil- 
ity P(clv) provided that P(c) = 2-k for all c E %? . One  
may as well maximize with respect to all c E % ’ the follow- 
ing expression: 

,I-1 

M  = p  c log P( UilCi) + y 
i=o 

= P c l%Poh) + P c l%PlbJ + Y 
iEA, iGA, 
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where p is any positive number, y it any real number, value is missing: for any y = ( y,, yi, . . . , yk- i) E GF(2)k 
A, = {i.Ci = O}, and A, = {i: ci = l}. Setting fi = 2 and let b(y) = Cr:,‘yj2j and denote 

n-l 

Y = - c [l%Poh) + hmh)l 
i=O u, = i 

c l-44)> Aj# 0 
;EA, 

(y is indeed constant with respect to c), it readily follows . p, Aj= 0 
that M = CiEi\O~(~,) - CiEA,p(uj), where p(u) = 
log[ pO( u)/p,( u)], and consequently where A, = {i: b(g,) = j} for j = 0,l; 1 ., 2k - 1. Then 

n-1 

A4 = c (-l)“p(ui). 
i=O 

2kp1 

M(s) = c ( -l)(s@U, 
j=o 

(3) 

Thus the quantity M = M(c, v), a so-called metric, is 
computed by labeling each location i with the logarithm of where g,* E GF(2)k is defined by b(g,*) =j. For b(s) = i 

the likelihood ratio of ui and then summing all properly the right side of (3) is recognized as the ith component of 
signed labels. In particular, for a binary symmetric channel U = (U,, 17,; . ., Us-,) given by 
with crossover probability q,O < n < 172, we have ~(0) = 
- ~(1) = log[(l - 11)/n] > 0. Consequently, the log-likeli- 
hood ratio in (1) may be replaced, without loss of gener- 
ality, by the label p(u) = (- 1)“. Therefore, an optimal c 
brings the Hamming distance between c and v to mini- 
mum, as expected. 

In the case of a continuous-output memoryless channel 
characterized by two transition probability densities f/(u) 
= f( u] j), u E Iw, j = 0, 1, where Iw is the real line, optimal 
decoding consists of maximizing f(v]c) = n::$(uj]cj), 
and a derivation similar to the preceding one yields (l), 
where now p(u) = log [ fo( u)/fi( u)]. In particular, for the 
case of additive Gaussian-noise channel and where the 
components of v take values from an appropriate analog 
alphabet, say {fi, - fi}, p(u) is proportional to u, and 
consequently, we may set p(u) = u in (1). Hereafter p(u) 
stands for any one of the labels mentioned earlier. 

Let G be the generator matrix of V that represents the 
encoding, that is, a message s E GF(2)k is mapped onto a 
codeword c according to c = sG, and let gj for i = 
0,l; . .) n - 1 denote the columns of G. Then (1) becomes 

n-1 

M(s) = c (- lp’)p( u;) 
i=o 

where ( . , .) stands for inner product over GF(2) and the 
dependence of M on s is emphasized. The maximization is 
carried out with respect to all s E GF(2)k. Thus the mes- 
sage is straightforwardly decoded, whether the encoding is 
systematic or not, by adding n labels signed in each of 2k 
prescribed ways and comparing the sums. More important, 
the decoding may be accomplished with practically the 
same computational complexity if in (2) the columns 
{g,: i = O,l;--, n - l} of any generator matrix of V (or 
any of its bit-permuted equivalents) are used, by ap- 
propriately transforming the optimal s that results from 
maximizing (2). Hence in the sequel we shall adopt freely 
any convenient row-equivalent and column-permuted ver- 
sion of G. 

It is rewarding to perform the summation in (2) accord- 
ing to increasing binary value of the columns of G, with all 
labels { p( u,)} that correspond to any common value being 
combined into a single label and p = 0 inserted whenever a 

U=uH, (4) 
where 

u = (u,, Ul,’ . . 9 Up-1 > (5) 

and Hk is the 2k X 2k Sylvester-type [7, p. 441 naturally 
ordered Hadamard matrix. This proves the following maxi- 
mum likelihood decoding rule. 

Algorithm A: 

a) Locate the largest component of U given by (4) say 
q. 

b) Set for s the k-bit radix-2 expansion of i. 

The manipulations involved in the application of the 
algorithm are illustrated in Fig. 1. For convenience we 
phrased Algorithm A under the assumption that there is a 
unique optimal message word; we shall adhere to this 
assumption also in the sequel. Of course, it may 
happen-although rather rarely in true soft-decision de- 
coding- that more than one component of U achieves the 
maximal value. In that case either one of them is selected 
arbitrarily or a decoding failure is announced. Also, the 
ratio of a uniquely attained maximum and the second- 
largest value attained by the components of U may serve 
as a measure of reliability of the decoded message vector. 

Algorithm A, when implemented with the aid of FHT, 
requires only k2k additions [21] (excluding the search for 
the largest component of U and the usually negligible 
amount of additions needed for obtaining the modified 
labels uj). In comparison with the straightforward compu- 
tation based on (2), there is a gain of n/k, which is 
significant for low-rate codes. An obvious candidate for 
taking a full advantage of this gain is the class of simplex 
(or maximal length shift-register) codes [8], [9]. A closely 
related example is the class of first-order Reed-Muller 
codes; in this case 

where the columns of GT are all the 2k-’ distinct binary 
numbers of length k - 1, thus A, = 0 for j = 
O,l;.., . 2k-1 - 1 Let U’ = u’H k-l where u’ = (~~k-1, 
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mapping def ined by 
columns of G 

k-l 

Fig. 1. Block diagram representation of Algorithm A. 

upLI1,’ * -, u2r ~ r), and  note that [21] 

i 

H 
Hk-l 

H 
Hk = HI @  Hkel = k-l 

k-l 
-H 

k-l 

where 8  stands for Kronecker product. It follows by (4) 
that decoding may be  performed by locating the compo- 
nent of U with the largest absolute value, say Ui’, and  
taking for s the k bit radix-2 expansion of i or i + 2k-1, 
depending on  the sign of U,‘. This well-known result [l]-[6], 
[7, p. 4191, derived here directly from Algorithm A, demon-  
strates the possibility of reducing the number  of additions 
by taking into account the structure of the code. We  shall 
pursue this matter in the following sections. 

III. COMPUTATIONAL GAIN BY EMPLOYING 
ZERO-CONCURRING CODEWORDS (6) 

Definition 1: Let L  be  a  nonnegat ive integer. A set of J 
independent vectors in GF(2)” is called L-concurring if 

1) in each of some L  positions all J vectors have 
component  one, and  

2) in all other positions at most one  of the J vectors has 
component  one. 

where G  B is a  J x n matrix with those codewords listed as 
its rows. Denote the columns of GT  and  GB, respectively, 
by g,’ and  g,! for i = 0,l; . . , n  - 1  and  partition all 
message vectors accordingly: s = (sr]sB). Then  (s, g,) = 
(sT, gT) + (s B, gr), and  (2) becomes 

In particular, at most one  member  of a  set of zero-concur- 
ring vectors has component  one  in any of the positions. A 
set of concurring vectors is a  set of L-concurring vectors 
where L  2  1. 

M(sT, s”) = c ( - l)(‘T.aQ U;) 
iEQ2, 

J-1 

+ J;O(-l)Sy c (-1)(S73$(vJ (7) 
itCl, 

The  terminology introduced stems from the word con- 
curring, encountered in the literature on  ma jority logic 
decoding [22]; the more commonly used term in that 
context is orthogonal. Evidently, a  set containing one  non- 
zero vector is zero-concurring. Also, a  set of two indepen- 
dent vectors is L-concurring for some L  2  0. For any 
matrix K over GF(2) let D, be  the size of a  maximal 
collection of pairwise-different nonzero columns of K. 

Lemma 1: Let K be  a  J X n matrix over GF(2). There 
exists a  matrix row-equivalent to K and  with all its rows 
zero-concurring iff D, = J. Furthermore, assuming that all 
the rows of K are concurring, K is not row-equivalent to 
any matrix with all its rows zero-concurring iff D, = 
J+ 1. 

where Q2, is the (possibly empty) set {i: g,! = 0} and  
Q j = {i: b(gy) = 2’) for j = 0,l; . 9, J - 1  are non-  
empty sets. Rearrangement of the summation over Q2, and  
over each s2, separately according to increasing value of 
b(g,T) converts each sum into the ith component,  where 
i = b(sT), of a  2k-J-dimensional Hadamard transformed 
vector UC”), resp. U(j) given by UC”) = uc”)HkdJ and  
u”’ = ,,(J)HkdJ with ucrn) and  u(j) being defined simi- 
larly to u  in (5). Thus the maximum of M(sT, sB) with 
respect to all sT E GF(2)k-J and  sB E GF(2)J is equal  to 
the largest component  of Y given by 

J-l 

Y= max u(m) + C (-l)“Ru(i) 
I 

(8) 
s’s GF(2)J j=O 

Proof: Assuming D, = J, let K’ = (A B) be  a  col- 
umn-permuted version of K such that A is invertible. Then  
any nonzero column of B is also a  column of A and  
A -‘K’ = (I A -lB), where each column of A -lB con- 
tains at most a  single 1. Hence by inverse column permuta- 
tion of A - ‘K ‘, the desired matrix is obtained. Conversely, 
any J X n matrix K’ with zero-concurring rows satisfies 
D,, = J, and  a  row operation does not affect the number  
of different columns. As for the second statement, either 
D, = J or D, = J + 1, because the rows obtained by 
puncturing the positions where concurring occurs are either 
linearly dependent  or zero-concurring. Hence the result 
follows by the first statement. 

Assume that %  possesses a  set of J zero-concurring 
codewords, and  let 
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Fig. 2. Block diagram illustration of Algorithm B. 

where the maximum is computed componentwise. For any 
vector X over the reals, let 1x1 be the vector obtained by 
taking componentwise absolute value. Denote 

J-l 

v= U’“‘-t 1 Iu’j)l. (9) 
J=o 

It is easily seen that Y = V. This proves the following 
optimal soft decision decoding procedure. 

Algorithm B: 

a) Locate the largest component of V given by (9), say 
5. 

b) Take for sr-the k-J bit radix-2 expansion of i and set 
s/” = 0 whenever Ui(j), the ith component of U(j), is 
nonnegative; otherwise, set sJ? = 1. 

Fig. 2 provides block-diagram illustration of Algorithm 
B. The number NB of additions required by the decoding 
procedure, including calculation of absolute values, is as 
follows: 

NB = (J + l)(k - J)2k-J + J2k-J 

= [k(J + 1) - J2]2k-J, (10) 
and it is somewhat less if Q2, = 0, Thus a significant 
improvement is obtained with large J. Further reduction of 
computational complexity is achievable if for some j E 
{(AL- . ., J - l} the number n, of elements of s2, satisfies 
nj I k - J. For such j direct (rather than fast) transform 
evaluation of /U(i)] requires, due to sparseness of u(j) and 
repetition of entries in Ii7 
alent operations. The case’: 

1, only nj2”-’ addition-equiv- 
co -C k - J also allows a reduc- 

tion of complexity. It may happen that nj I k - J for all 
j = 0,l; . .) J - 1 and also that no0 I k - J; Table I 
provides some examples. Then the total number N; of 
addition-equivalent operations, using direct Hadamard 
transform, is given by 

J-l 

NL = n,2”m + c nj2”1-’ + J2k-“. (11) 
j=O 

The J + 1 inequalities nj I k - J can be satisfied only if 
n/( J + 1) 2 k - J; this condition implies in turn (k - 
1)2 2 4( n - k) and sets both lower and upper bounds on 
J. By (11) we conclude that usually a large value of J is 
needed for securing high efficiency. 

It is evident that 

(14 
where d is the minimum distance of %‘. For certain codes 
the foregoing bound is achievable. Maximal sets of zero- 
concurring codewords for some codes where the bound is 
met, for example, the Golay codes, and for some other 
codes where it is impossible to attain the bound are listed 
in Table I. Those lists were obtained by computer search. 
A result of a more general kind is the following. 

Theorem I: In V = RM(r, m), the Reed-Muller code of 
order r and length n = 2”, there is a set of J = n/d = 
2”‘/2 m-r = 2’ zero-concurring codewords. 

Proof: Assume that r < m since otherwise W contains 
all vectors of length n = 2” = 2’ and the conclusion triv- 
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TABLE I 
MAXIMALSETSOFZERO-CONCURRINGANDSETSOFCONCURRING CODEWORDS 

Code Generator poly- nk d Zero-concurring L-concurring 
nomial bound cod& words bound code words 

Golay (0,1,5,6,7,9,11) 23 12 7 3 11001011001001010000000 
00000000010010101001011 

00110100100100000110100 

Expurgated (0,2,5,8,9,10,11,12) 23 11 8 2 10100100111110000000000 

Hamming (0,1,4) 

Expurgated (0,2,4,5) 
Hamming 

BCH (0,4,6,7,B) 

BCH (0,2,4,6,7,9,10, 
13,17,18,20) 

Expurgated (0,1,2,3,4,5,6,8,9, 
BCH 11,13,14,17,19,20,2L 

BCH (0,1,2,4,6,7,8) 

BCH (0,1,4,5,7,8,9) 

00001000000000111101101 

15 11 3 5 100001000010000 

010000100001000 

001000010000100 
000100001000010 
000010000100001 

15 10 4 3 101011000000000 

000100000001101 
000000110100010 

15 7 5 3 001001001001001 

010010010010010 

100100100100100 

31 11 11 2 any *OnzerO code 
word and its com- 

plement 

31 10 12 2 any nonzero 

codeword 

17 9 5 3 11101011100000000 
00010000011001100 
00000100000110011 

21 12 5 4 100100100100100100100 

010010010010010010010 

001001001001001001001 

5 11000111010100000000000 
01100011101010000000000 

01000011000000111001000 

01010011000001000010010 

01001011000000000100101 

010001001101000110001 

6 

10100100111110000000000 

01010010011111000000000 

00001000011110001001100 
00000000011110110100001 

l lOOOOObOlOOOOl 
110010000000000 

110100010000000 
110001001000000 

111000000010000 

110000100000100 
110000000001010 

101011000000000 

001010110000000 
011010001000000 

001110000000100 
001010000100010 
001010000001001 

* 

same as zero-concurring 

* 

any LWO independent 

codewords 
* 

any TWO independent 
codewords 
* 
partially concurring set 

11101011100000000 

11010001011000000 
11000001000001100 

00000100000110011 
* 
110011011100000000000 

011001101110000000000 
010101001100011001000 

010001001100100000110 

*Lengthy by nonexhaustive search 

ially holds. The polynomials (1 + x)‘, where i satisfies it follows that the coefficients of each aj(x) are zero except 
i < 2” and w2(i) 2 m - r,w2(i) standing for the radix-2 for one or more all-one blocks of blocklength 2”-’ that 
weight of i, belong to %  and are independent [23]. In start at a location which is some multiple of 2”-‘. Hence 
particular, i = 2”-’ - 1 + j2”-’ for all j = 0,l; . ., the size of a collection of pairwise-different nonzero col- 
2’ - 1 are eligible because ~~(2”-’ - 1) = m - r. Let umns of K is at most 2m/2m-r = 2’. However, since the 
ai = (1 + ~)~“‘-‘-l+j~~-’ for j = 0,l; . .,2’ - 1, and rows of K are independent, K must possess at least 2’ 
let K be a 2 ’ x 2” matrix that has these codewords as its independent columns. Hence the result follows by 
rows. Since Lemma 1. 

Uj(X) = (1 + x) 2""-1[(1 + X)2m-']j 

= ( 1 + x + x2 + . . . +x2m-‘-‘)(l + xZm-‘)j, (13) 

For example, the RM(2,5) code has dimension k = 16, 
and there exists a set of J = 4 zero-concurring codewords, 
whereas for RM(3,5) the corresponding numbers are k = 
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26 and J = 8, respectively. The computational gain is 
indeed high in these cases. In general, for any fixed value 
of m, J = 2’ increases monotonically with k, but k in- 
creases more rapidly unless the rate is higher. Therefore, 
Algorithm B is practical only for either low-rate or short 
Reed-Muller codes. Presumably a similar conclusion ap- 
plies to most if not all large classes of block codes. A 
decoding procedure that is more useful for some higher 
rate codes is developed in the next section, and an efficient 
algorithm for high-rate block codes is presented elsewhere 
[20]. 

By puncturing the set of 2’ zero-concurring codewords 
introduced in the proof of Theorem 1, we obtain, provided 
that r < m, a set of 2’ zero-concurring codewords for the 
punctured Reed-Muller code RM*(r, m) of length n = 
2’” - 1. However, for RM*(r, m) 

n 2” - 1 2’- 1 --2’= 
- = d 2n*-’ _ 1 2’ 2m-’ _ 1 ’ 

and consequently, [n/d ] > 2’ whenever r 2 m/2. For a 
subclass of punctured Reed-Muller codes and for many 
other cyclic codes, the following result provides large, 
sometimes bound-meeting, sets of zero-concurring code- 
words. 

Let W be cyclic, denote by g(x) and h(x) its generator 
and check polynomial, respectively, and let J be a positive 
divisor of n. The polynomial 

1 fx” aJ(x) = 1 + XJ + x2-J + . . . +xn-J = ~ 
1 + xJ (14) 

belongs to % if and only if 1 + xJ is a divisor of h(x). 
Indeed, if the last condition holds, then a,(x)h(x) = 
0 (mod x’l + 1). Conversely, for some polynomial z(x) we 
have aJ(x) = z(x)g(x), but also a,(x) = g(x)h(x)/(l + 
x.‘); thus by uniqueness z(x) = h(x)/(l + xJ). This im- 
plies the following result. 

Theorem 2: Let V be cyclic with composite blocklength 
n, let J 2 2 be a divisor of n, and let a,(x) be given by 
(14). The set {x&,(x): j = 0,l; . ., J - 1} is a zero-con- 
curring subset of %? iff 1 + xJ is a divisor of h(x). If J 
= [n/d ] , where d is either the minimum distance or 
designed distance of 9, then there is no subset of zero-con- 
curring codewords in % with more than J elements. 

The case J = 1 is intentionally excluded from Theorem 
2 because by (10) the corresponding gain is negligible, a 
fact congruous with the observation that every code con- 
tains a set of one zero-concurring codeword. If n is odd, 
then the condition h(x) = O(mod 1 + xJ) is equivalent to 
the requirement that 1 + xJ and g(x) have no common 
zeros. Applying Theorem 2 to the case of %? = RM*(r, m), 
all we need [7, p. 3831 to do is to check that for a 
satisfactorily large divisor J of n w,(in/J) 2 m - r for all 
i = 1,3;.., J. Thus, for example, we find in RM*(3,6) 
and RM*(4,6), respectively, bound-meeting subsets of 9 
and 21 zero-concurring codewords, compared with only 8 
and 16 obtained by puncturing. Application of Theorem 2 
to W = BCH(n, d), the primitive BCH code of length 

n = 2”’ - 1 and designed distance d, consists only of 
checking that no cyclic shift of the m bit radix-2 expansion 
of in/J for all i = 1,3,-a., J coincides with the radix-2 
expansion of any positive integer less than d. For example, 
we find in BCH(63,9) with k = 39 a bound-meeting subset 
of J = 7 zero-concurring codewords, whereas for 
BCH(15,5) with k = 7 the corresponding, also bound- 
meeting, number is J = 3, which implies a remarkably low 
computational complexity. In the nonprimitive (21,12) 
BCH code, a set of J = 3 zero-concurring codewords is 
found by applying Theorem 2, and it was verified by 
computer search that no zero-concurring subset exists that 
meets the bound 4 (see also Table I). 

It is noteworthy that a set of zero-concurring codewords 
derived either by Theorem 2 or (for RM(r, m)) by the 
proof of Theorem 1 is suited to increase the efficiency of 
Algorithm B through the use of direct Hadamard trans- 
form iff n/J 2 k - J; such J exists iff k2 2 4n, and the 
corresponding complexity is given by 

NL = nzn/J-1 + J2kpJ. 

Theorem 2 is not applicable for a cyclic code with prime 
n. A possible approach in this case is to select an ap- 
propriate set of integers { j} such that {x’g(x)(mod 1 + 
x’l)} is a zero-concurring subset of W. For example, in the 
Hamming code of length 31 with 1 n/d ] = 10 generated by 
g(x) = 1 + x2 + x5 we find a set of J = 8 zero-concur- 
ring codewords by setting j = O,l, 7,8,14,15,21,22. Evi- 
dently, for high-rate cyclic codes multiples of n - k + 1 
are always eligible, but they do not necessarily constitute 
the best choice. Another interesting case is a code with 
composite but odd n and g(x) divisible by 1 + x. Here 
one may try the set {x2j(l + x)a,(x): j = 0, l;.., 
(J - 3)/2), h w ere a,(x) is given by (14); it is a zero-con- 
curring subset of % whenever J 2 3, n = O(mod J), and 
the zeros of (1 + xJ)/(l + x) are nonzeros of the code. 
For example, in the symmetric (63,26) BCH code with 
d = 14 with zeros consisting of { &: i = 0, + 1,. . . , & 5} 
and the conjugates of these, where u is a primitive element 
of GF(64), we find a bound-meeting set of four zero-con- 
curring codewords (J = 9). However, for the expurgated 
Hamming code of length n = 15, the suggested procedure 
yields a set of only two codewords corresponding to J = 5, 
whereas a bound-meeting set is given by {x’[(l + x3)/(1 
+ x)]g(x): j = 0,5, lo}. A generally useful alternative for 
the case of g(x) = 0 (mod1 + x) and odd n is to work 
with ((1 + xi)a,(x): j = 1,2; . *, J - l}, where a,(x) is 
given by (14); it is an n/J-concurring subset of %? for a 
divisor J of n provided that (1 + xJ)/(l + x) and g(x) 
have no common zeros. For example, in the abovemen- 
tioned symmetric (63,26) BCH code we find a bound- 
meeting set of eight seven-concurring codewords. 

IV. COMPUTATIONALGAINBY EMPLOYING 
CONCURRINGCODEWORDS 

Assuming that %? has a set of J concurring codewords 
arranged as rows of G * in (6), we obtain a modified 
version of (7) that contains one additional term in its right 
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side, name ly, 

(15) 

where Q2, = {i: b(gB) = 2J - l} and  !Z stands for sum- 
mation modu lo-2. Also, one  of the sets Q j, 0  I j I J - 1, 
is possibly empty. By Lemma 1  this occurs iff G  B is 
row-equivalent to a  matrix with zero-concurring rows. De- 
fine sJ” = !Z$:,%,” and  s BE = (s B s,“). Then  we have (7) 
with J - 1  and  s,? replaced by J and  s,BE, respectively. 
Consequently, instead of (8) we write 

Y= max 
s*"EGF(2)J+' 

UC”) + i (- l)“,BEU’j’ . (16) 
j=O I 

&y = 0  

Clearly, the difference between the zero-concurring and  the 
concurring cases is essentially embodied in the constraint 
E;=os;E = 0  that appears in (16). Denote 

v = u(m) + f: IuCi) 1  (17) 
j=o 

and  remove for a  moment  the constraint. Then  the decod- 
ing may proceed as outlined in Algorithm B by locating 
first the largest component  of V, say the ith; if rI$oq.(j) 
2  0, then the constraint is also satisfied. On  the other 
hand, if rI:=oUi(‘) < 0, then to comply with the constraint, 
we either keep i and  change a  single bit of the previously 
obtained s BE, one  with location I such that ]1/1(‘)] is m inimal 
among  (/U.(j)]: j = 0  1  . . . J}, or perhaps select some 
other component  of V: Accdrdingly, denote 

y = V, - 2  m in 
j=O,l,,..,J 

( Lp  ( (18) 

for i = 0,l; . ., ZkPJ - 1  and  let 
x = (x0, x1; . -, X*k-JL1) (19) 

where 

xi = 1 
K> ,Coq(J) 2 0 

(20) 

b6 otherwise. 

Then  Y = X. This proves the following optimal decoding 
rule. 

Algorithm C. 

a> 

b) 

c) 

Locate the largest component  of X given by (20), say 
the ith. 
Take for sT the k - J bit radix-2 expansion of i and  
set sJa = 0  if U,(j) 2  0; otherwise, set sj” = 1. 
Check whether Xi = W ,. In case of a  positive answer, 
change a  single bit of s B at a  location 1  such that 
]q(“] = m in { IL$(J)I: j = 0,l; . ., J}, provided such 1  
exists (it may happen  that ]Ui(J)] < ]Ui(J)( for all j = 
0,l; . ., J - 1). 

If GB in (6) is row-equivalent to a  matrix with zero-con- 
curring rows, then Xi = y for all i and  Algorithm C 
reduces to Algorithm B. Excluding that singular case from 

the discussion, the number  of additions required for calcu- 
lating V is (J + 2)(k - J)2k-J + (J + 1)2k-J, and  not 
more than (J + 2)2k-J additions are needed  for obtaining 
{ W i: i = 0,l; . ., 2k-J - l} (actually half of this number  
is enough  on  the average since not all I& are used). To  
check the conditions in (20) we perform for each i a  logic 
AND operation on  one  word of length J + 1  that contains 
the most significant bit in twos-complement representation 
of ~!$j) for j = 0, 1,. . ., J. The  total addition-equivalent 
computational complexity (for the case Q2, #  0) is thus 

NC = [k(J + 2) - J* + 4]2k-J. (21) 
If ni<k-Jforall j~{0,1;*.,J} and  n,<k-J, 
then the reduced complexity N& of Algorithm C, which 
corresponds to calculation of V by direct Hadamard 
transform, is given by 

Ng = n,2”m  + i nj2”j-’ + (25 + 4)2k-J. (22) 
j=O 

A mean ingful comparison of NB and  N; with N,, N; 
has to be  performed for some fixed code rather than for 
some J. In certain codes it may be  easier to find a  large set 
of concurring codewords than a  zero-concurring subset of 
the same size (expurgated codes and  symmetric BCH codes, 
ment ioned in Section III are examples). Moreover, many 
codes contain considerably more concurring than zero-con- 
curring codewords. A comparison of the efficiency of all 
the algorithms presented heretofore, as well as Wo lf’s 
method [ll], is exhibited for a  few codes in the following 
table. Values of J and  nj for computation of NB, N;, No, 
and  N; were obtained from Table I. For all but the (15, 
10) code, mod ified versions of (10) and  (21), with the right 
side of each reduced by (k - J)2k-J, were used. Based on  
the structure of the trellis and  the number  [ll, p. 781  of its 
nodes, evaluation of all node  values in Wo lf’s method 
requires 

N, = (2k - n  + 2)2”-kf’ - 6  

additions, except in case of the (15, 7) code where the 
expurgated trellis is not fully stretched. 

Code 

Golay 23 12 7 49152 15360 4032 7168 1964 12282 
Hamming 15 11 3 22528 2240 380 800 317 282 
Expurgated 

Hamming 15 10 4 10240 3968 504 768 286 442 
BCH 15 7 5 896 240 288 240 288 634 
BCH 21 12 5 49152 15360 2880 7168 1924 5114 

The  complexity of maximization, excluded from considera- 
tion up  to here, is given for the algorithms developed 
earlier by 2  - k J - 1  (with J = 0  for Algorithm A); this 
amounts to less than ten percent of Nd and, for all but the 
(15,10) code, less than 20  percent of N& In Wo lf’s method 
partial maximizations, that is, selection of a  survivor at 
each node, require altogether 127  addition-equivalent oper- 
ations for the (15,7) code (i.e., 20  percent of N,) and  
(2k - n  + l)2”-k - 1  comparisons, which represent an  in- 
crease of - 40  percent in complexity, for the other codes. 

Concurr ing sets were usually explored in the context of 
ma jority logic decoding. The  following result is evident in 
view of (21). 
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Theorem 3: Suppose that W ’ , the dual code of Q?, can 
correct e = ] J/2] errors by (possibly multiple-step) 
majority logic decoding using J parity check equations. 
Then W can be optimally decoded by FHT with complexity 
of the order 0(2k-J). 

_ _ 

Theorem 4: The number J1 of one-concurring and the 
number J2 of concurring codewords in V with minimum 
distance d satisfy 

For a proof see [7, pp. 390-3931. The bounds presented 
so far are related as follows: 

n n-l 2n 

Because RM( r, m) = RM( m - r - 1, m) ’ , provided that 
r < m [7, p. 3751, we conclude by Theorem 3 and [7, p. 
3931 that J2 2 2’+l - 1 in &M(r, m). Thus by Theorem 4 
the following result is implied. 

Theorem 5: In RM(r, m) there exists a set of J2 = 2n/d 
- 1 = 2’+1 - 1 concurring codewords. 

By puncturing the set of concurring codewords in- 
troduced in Theorem 5, we obtain, provided that r < m, a 
set of 2’+l - 1 concurring codewords for RM*(r, m). 
Since for the punctured code 

2(2’ - 1) 
- (2’+1 - 1) = 2”~’ _ 1 ) 

it follows that [2n/d - 11 = 2’+l - 1 whenever r s (m 
- 1)/2. Because RM*(r, m) c BCH(2m - 1,2”-’ - 1) 
we also have a set of 2( n + l)/(d + 1) - 1 concurring 
codewords for BCH(n, d) with n = 2” - 1 and designed ~ 

Fig. 3. Iterative version of Algorithm C. 

distance d = 2”-’ - 1, and this set meets the bound 
[2n/d - l] if n < d(d + 3)/2. Similarly, because 
RM(r, m) is included in the extended BCH code with 
n = 2” and d = 2”-’ - 1, it follows that the latter code 
has a set of 2n/(d + 1) - 1 concurring codewords which 
is bound-meeting if n < d(d + 1)/2. 

algorithm is preferable whenever Ni, < J + 3; this de- 
mands high signal-to-noise ratio. On the other hand, N; 
= @U-J>> in the worst case, that is, when decoding 
ends at iteration Ni, = 2k-J, implying that in case of a very 
noisy channel Algorithm C is faster. 

An iterative version of Algorithm C, owning increased 
computational gain in case of high signal-to-noise ratio, is 
illustrated by a flowchart in Fig. 3. The idea is to econo- 
mize in the computation of {IV.} by replacing step a) by an 
iterative procedure. 

The iterative version has a pronounced advantage when 
the feedback path is used only a few times. Indeed, the 
number of additions required for calculating V is the same 
as in Algorithm C, and the number of addition-equivalent 
operations needed for each of the first few iterations is 
approximately 2k-J + J + 3 = 2kPJ (actually the number 
decreases by one with each iteration). Altogether there are 
about 

NC’ = [(J + 2)(k -J) + J + 1 + Nit]2k-J 

operations, where Ni, is the number of iterations. Upon 
comparing NC’ with N,, we conclude that the iterative 

evaluate T as in step(b) 

of Algorithm C 

An algorithm that suits a relaxed type of concurrence is 
obtainable by slightly modifying the derivation of Al- 
gorithm C. 

Definition 2: A set of J independent vectors in GF(2”) 
is partially concurring if 

1) in each of some L 2 1 positions at least one of the J 
vectors have component one and the rest (if any) 
have component zero, and 

2) in all other positions at most one of the J vectors has 
component one. 

A set of J = 2 partially concurring vectors that is not 
(strictly) concurring is necessarily zero-concurring. Also, by 
modifying the proof of the bound on J2 in Theorem 4, it 
may be shown that the number J3 of partially concurring 
codewords satisfies 

I 2n I 
J,I d -1. 

Ll 
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Nevertheless, J3 2  J2 and  in some codes J3 > J2. A proof 
similar to that of Lemma 1  yields the following result. 

Lemma 2: A J X n matrix K over GF(2) with J par- 
tially concurring rows is not row-equivalent to any matrix 
with all its rows zero-concurring iff D, = J + 1. 

Assuming that 9  has a  set of J partially concurring 
codewords, we again have (7) with one  more term similar 
to that given by (15) added  to its right side, but with ti2, 
appropriately defined and  Ef~is,s replaced by a  partial 
sum of the bits of s B, say E:r E +Y~. Denoting sJ” = E, E 9.sF 
and  sBE = (sB sJ), this leads to (16) with the mod ified 
constraint !ZJ E+,!E = 0, where 9= 9’ U {J}. Subse- 
quently, W , and  Xi are defined as before but with 
{O,L. . *> J } replaced by 9. The  resulting decoding al- 
gorithm is therefore unchanged except for the replacement 
of {O,l; . -, J} by 9  in step c). The  computational com- 
plexity in this case is upperbounded by the right side of 
(21) because { y } and  { X,} are more easily obtained if 9  
contains less than J + 1  numbers.  It is also possible to 
develop an  iterative algorithm for the partially concurring 
case. 

V. AN ALGORITHMWITHREDUCED 
MEMORYREQUIREMENT 

Aside from the computational gains, Algorithms B and  
C incorporate a  relaxed memory requirement owing to the 
decreased dimension of the Hadamard transformation. We  
describe here a  more effective approach for reaching the 
latter goal. Consider an  arbitrary partitioning (6) of G  
where GT  is a  Q  x n matrix and  apply the subsequently 
introduced notation for rewriting (2) as follows: 

1, - 1  
M(S) =  c (- 1)(STJ) ( -l)cZB’aP)p( u,). (23) 

I=0 
Let 

ww)p(C,), 
u(‘) = 

1  

,z t-11 A,+ 0  
I / (24) 

0, Aj= 0  

where Aj = {I: b(gT) =j} for j = 0,1;..,2Q- 1  and  
i = b(sB). Thus 

2Q-1 
jqs) =  c (- l)(W),:i, 

(25) 
j=O 

where g,r* E GF(2) Q  is defined by j = b(gT*) for j = 
0,l; + ., 2O - 1. Denote ~(~1 = (tit) uji) . . . u$~,) and  

u(i) = u(‘)H 
Q' i = O ,l;.. ,2k-Q - 1. (26) 

Evidently, the maximum of M(s) given by (25) with re- 
spect to all s E GF(2)k is equal  to the maximum among  
the largest components of all U(j) defined by (26). This 
implies the following optimal soft decision decoding proce- 
dure. 

Algorithm D: 

a) Locate the largest component  of UC’) given by (26) 
for each i = 0,l; 3  a, 2k-Q - 1. 

b) Identify the index corresponding to the largest of all 
numbers obtained in step a), say i; then denote by j 
the location of the largest component  of U(‘). 

c) Take for sT the Q-bit radix-2 expansion of j. For sB 
take the k - Q  bit radix-2 expansion of i. 

Except for the computations prescribed by (24) and  the 
maximizations (with total negligible complexity equal ing 
that of the single overall maximization in previous decod- 
ing procedures), Algorithm D performed by FHT requires 
2k-Q . Q2Q = Q2k additions. However, in contrast to pre- 
vious cases the computation of the mod ified labels UJ(i) 
may be  quite cumbersome unless proper care is taken. If 
GT  is selected so that its columns are pairwise-different, 
then, with (24) entailing merely sign changes of negligible 
complexity, a  computational gain of nearly k/Q relative to 
Algorithm A results. However, compliance of GT  with the 
foregoing condition confines Q  to sufficiently large values; 
certainly Q  < log, n  is prohibited. An important feature of 
Algorithm D is the significant memory reduction achiev- 
able by excecuting the Hadamard transforms (26) sequen-  
tially; this consideration lim its Q  to reasonably small 
values. As a  compromise one  may take Q  = log, n, usually 
enabl ing the choice of GT  that has only a  few columns 
listed in more than one  location, though for the purpose of 
hardware realization it seems to be  preferable to provide 
more regularity by setting Q  large enough  such that no  
additions occur in the precomputat ion of mod ified labels. 

Consider %?  = RM(r, m), and  take Q  = m  + 1. Then  
Q  > m  = log, n, and  indeed a  submatrix GT  exists, the 
generator of RM(1, m), whose columns are all the 2” 
distinct m-tuples with a  l-bit annexed at a  fixed location 
[7, p. 3731. Therefore, RM(r, m) is decodable either 
by operating 2  k-m-1 RM(1, m) decoders (e.g., Green 
machines) in parallel or by performing RM(1, m) decoding 
2” ~ n’- ’ times by a  single apparatus, followed by steps b) 
and  c). The  sequential processing accommodates a  memory 
reduction by a  factor of approximately 2k/2”+’ = 2’-“-l 
and  also a  computational gain of k/(m + 1) relative to 
Algorithm A. By taking advantage of the row-equivalence 
of GT  to a  matrix with two zero-concurring rows (implied 
by Theorem 1, also obvious from the presence of the 
all-one row), the memory and  computational gains become 
nearly 2kPm+1 and  4k/(3m - l), respectively. Further im- 
provement is obtained by taking into account the existence 
of three concurring codewords (Theorem 5) in RM(1, m), 
yielding reduction of memory requirement by a  factor close 
to 2k-m+2 and  computational gain of 9k/(5m). In con- 
trast, by adopting GT  whose columns are all the 2m distinct 
m-tuples, the resulting numbers are 2k-” and  k/m, respec- 
tively, and  no  further improvement is evident. 

As illustrated earlier, combination of Algorithm D with 
Algorithm B or C may yield fruitful results. It is also 
noteworthy that a  column of GT  that appears in several 
locations but always above a  zero column of G  B induces 
only a  slight computational complexity, because for the 
corresponding value of j the labels ~(~1 are all equal, 
irrespective of the value of i. 
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