
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-32, NO. 3, MAY 1986 355

Optima l Soft Decision Block Decoders Based
on Fast Hadamard T ransform

YAIR BE’ERY AND JAKOV SNYDER& MEMBER, IEEE

AMrcrct- An approach for efficient utilization of fast Hadamard trans-
form in decoding binary linear block codes is presented. Computational
gain is obtained by employing various types of concurring codewords, and
memory reduction is also achieved by appropriately selecting rows for the
generator matix. The availability of these codewords in general, and
particularly in some of the most frequently encountered codes, is discussed.

I. INTRODUCTION

I N THIS PAPER we present an approach for efficient
utilization of the fast Hadamard transform (FHT) in

soft decision (also named analog) maximum likelihood
decoding of binary linear block codes. Among the rela-
tively few existing results that involve application of FHT
for decoding, perhaps the oldest one is the Hadamard
transform decoding of first-order Reed-Muller codes pro-
posed by Green [l]; see also [2]-[6] and [7, p. 4191. Appli-
cation of FHT for decoding maximum length shift-register
codes is presented in [8] and [9]. Utilization of the Green-
machine concept for decoding binary block and convolu-
tional codes is described by Clark and Davis in [lo], but
their procedure is efficient only for low-rate codes. An
efficient maximum likelihood soft-decision decoding al-
gorithm based on trellis description of high-rate block
codes was conceived by Wo lf [ll].

The various alternative approaches investigated for ob-
taining optimal soft-decision decoders include the maxi-
mum likelihood symbol-by-symbol decoding rules [121, [131
and the m inimum mean-square error decoding algorithm
[14], [15] that uses Fourier and Hadamard transforms for
computing certain parameters. Suboptimal soft-decision
block decoding by implementing reduced trellis search
is discussed in [16], and two different suboptimal soft-
decision decoders [17], [18] apply erasures for reducing the
number of candidate codewords. A maximum likelihood
hard-decision decoding algorithm applicable to certain
Reed-Muller codes is presented in [19]. Recently, a new
method of maximum likelihood hard-decision decoding of
binary codes was proposed [24].

Manuscript received October 30, 1984; revised September 30, 1985.
J. Snyders is with the Department of Electronic Communications,

Control and Computer Systems, Tel-Aviv University, Tel-Aviv, Israel.
Y. Be’ery is with the Department of Electronic Communications,

Control and Computer Systems, Tel-Aviv University, Tel-Aviv, Israel.
IEEE Log Number 8406948.

The basic algorithm developed in Section II (Algorithm
A) is slightly more general but essentially the same as the
one described in [lo]. However, the derivation we provide
is formal even though straightforward. Algorithm A is
applicable for decoding any binary block or truncated
convolutional code and is therefore, in a sense, universal.
However, it is inefficient unless the rate of the block code
is extremely low or the (truncation) length of the code is
short. In subsequent sections we develop somewhat more
complex, but significantly more efficient decoding rules by
taking into account the structure of the code under consid-
eration. In Section III we use zero-concurring (i.e., or-
thogonal when viewed as real) codewords for reducing
computational complexity, whereas in Section IV concur-
ring (more commonly but m isleadingly named orthogonal)
codewords are emp loyed for the same purpose. The avail-
ability of these codewords in general, and particularly in
some of the most frequently encountered codes, is dis-
cussed, and the efficiency of the various algorithms is
compared for five particular codes. In Section V an al-
gorithm with reduced memory requirement is presented. A
different approach for reducing computational complexity,
resembling that of [ll] but without relying on a trellis
diagram, which is applicable also to convolutional and
combined codes, is presented elsewhere [20].

II. THE BASIC ALGORITHM

Let %? be an (n, k) binary linear block code of length n
and dimension k. Assume for a while that a codeword is
transmitted through a discrete memoryless channel with
output alphabet Db and transition probabilities P,(u) =
P(ujj), u E il6, j E GF (2) and that the word v =
(ug, Ul,’ . ., q-1>, uj E K6, is observed at the output. Opti-
ma l decoding consists of finding a codeword c =
cc,, Cl,“‘, c,-1) E %? that maximizes P(vlc) =
rI~~~P(uilci), that is, maximizes the a posteriori probabil-
ity P(clv) provided that P(c) = 2-k for all c E %? . One
may as well maximize with respect to all c E % ’ the follow-
ing expression:

,I-1

M = p c log P(UilCi) + y
i=o

= P c l%Poh) + P c l%PlbJ + Y
iEA, iGA,

OOlS-9448/86/0500-0355$01.00 01986 IEEE

356 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-32, NO. 3, MAY 1986

where p is any positive number, y it any real number, value is missing: for any y = (y,, yi, . . . , yk- i) E GF(2)k
A, = {i.Ci = O}, and A, = {i: ci = l}. Setting fi = 2 and let b(y) = Cr:,‘yj2j and denote

n-l

Y = - c [l%Poh) + hmh)l
i=O u, = i

c l-44)> Aj# 0
;EA,

(y is indeed constant with respect to c), it readily follows . p, Aj= 0
that M = CiEi\O~(~,) - CiEA,p(uj), where p(u) =
log[pO(u)/p,(u)], and consequently where A, = {i: b(g,) = j} for j = 0,l; 1 ., 2k - 1. Then

n-1

A4 = c (-l)“p(ui).
i=O

2kp1

M(s) = c (-l)(s@U,
j=o

(3)

Thus the quantity M = M(c, v), a so-called metric, is
computed by labeling each location i with the logarithm of where g,* E GF(2)k is defined by b(g,*) =j. For b(s) = i

the likelihood ratio of ui and then summing all properly the right side of (3) is recognized as the ith component of
signed labels. In particular, for a binary symmetric channel U = (U,, 17,; . ., Us-,) given by
with crossover probability q,O < n < 172, we have ~(0) =
- ~(1) = log[(l - 11)/n] > 0. Consequently, the log-likeli-
hood ratio in (1) may be replaced, without loss of gener-
ality, by the label p(u) = (- 1)“. Therefore, an optimal c
brings the Hamming distance between c and v to mini-
mum, as expected.

In the case of a continuous-output memoryless channel
characterized by two transition probability densities f/(u)
= f(u] j), u E Iw, j = 0, 1, where Iw is the real line, optimal
decoding consists of maximizing f(v]c) = n::$(uj]cj),
and a derivation similar to the preceding one yields (l),
where now p(u) = log [fo(u)/fi(u)]. In particular, for the
case of additive Gaussian-noise channel and where the
components of v take values from an appropriate analog
alphabet, say {fi, - fi}, p(u) is proportional to u, and
consequently, we may set p(u) = u in (1). Hereafter p(u)
stands for any one of the labels mentioned earlier.

Let G be the generator matrix of V that represents the
encoding, that is, a message s E GF(2)k is mapped onto a
codeword c according to c = sG, and let gj for i =
0,l; . .) n - 1 denote the columns of G. Then (1) becomes

n-1

M(s) = c (- lp’)p(u;)
i=o

where (. , .) stands for inner product over GF(2) and the
dependence of M on s is emphasized. The maximization is
carried out with respect to all s E GF(2)k. Thus the mes-
sage is straightforwardly decoded, whether the encoding is
systematic or not, by adding n labels signed in each of 2k
prescribed ways and comparing the sums. More important,
the decoding may be accomplished with practically the
same computational complexity if in (2) the columns
{g,: i = O,l;--, n - l} of any generator matrix of V (or
any of its bit-permuted equivalents) are used, by ap-
propriately transforming the optimal s that results from
maximizing (2). Hence in the sequel we shall adopt freely
any convenient row-equivalent and column-permuted ver-
sion of G.

It is rewarding to perform the summation in (2) accord-
ing to increasing binary value of the columns of G, with all
labels { p(u,)} that correspond to any common value being
combined into a single label and p = 0 inserted whenever a

U=uH, (4)
where

u = (u,, Ul,’ . . 9 Up-1 > (5)

and Hk is the 2k X 2k Sylvester-type [7, p. 441 naturally
ordered Hadamard matrix. This proves the following maxi-
mum likelihood decoding rule.

Algorithm A:

a) Locate the largest component of U given by (4) say
q.

b) Set for s the k-bit radix-2 expansion of i.

The manipulations involved in the application of the
algorithm are illustrated in Fig. 1. For convenience we
phrased Algorithm A under the assumption that there is a
unique optimal message word; we shall adhere to this
assumption also in the sequel. Of course, it may
happen-although rather rarely in true soft-decision de-
coding- that more than one component of U achieves the
maximal value. In that case either one of them is selected
arbitrarily or a decoding failure is announced. Also, the
ratio of a uniquely attained maximum and the second-
largest value attained by the components of U may serve
as a measure of reliability of the decoded message vector.

Algorithm A, when implemented with the aid of FHT,
requires only k2k additions [21] (excluding the search for
the largest component of U and the usually negligible
amount of additions needed for obtaining the modified
labels uj). In comparison with the straightforward compu-
tation based on (2), there is a gain of n/k, which is
significant for low-rate codes. An obvious candidate for
taking a full advantage of this gain is the class of simplex
(or maximal length shift-register) codes [8], [9]. A closely
related example is the class of first-order Reed-Muller
codes; in this case

where the columns of GT are all the 2k-’ distinct binary
numbers of length k - 1, thus A, = 0 for j =
O,l;.., . 2k-1 - 1 Let U’ = u’H k-l where u’ = (~~k-1,

SNYDERS AND BE’ERY: SOFT DECISION BLOCK DECODERS

mapping def ined by
columns of G

k-l

Fig. 1. Block diagram representation of Algorithm A.

upLI1,’ * -, u2r ~ r), and note that [21]

i

H
Hk-l

H
Hk = HI @ Hkel = k-l

k-l
-H

k-l

where 8 stands for Kronecker product. It follows by (4)
that decoding may be performed by locating the compo-
nent of U with the largest absolute value, say Ui’, and
taking for s the k bit radix-2 expansion of i or i + 2k-1,
depending on the sign of U,‘. This well-known result [l]-[6],
[7, p. 4191, derived here directly from Algorithm A, demon-
strates the possibility of reducing the number of additions
by taking into account the structure of the code. We shall
pursue this matter in the following sections.

III. COMPUTATIONAL GAIN BY EMPLOYING
ZERO-CONCURRING CODEWORDS (6)

Definition 1: Let L be a nonnegat ive integer. A set of J
independent vectors in GF(2)” is called L-concurring if

1) in each of some L positions all J vectors have
component one, and

2) in all other positions at most one of the J vectors has
component one.

where G B is a J x n matrix with those codewords listed as
its rows. Denote the columns of GT and GB, respectively,
by g,’ and g,! for i = 0,l; . . , n - 1 and partition all
message vectors accordingly: s = (sr]sB). Then (s, g,) =
(sT, gT) + (s B, gr), and (2) becomes

In particular, at most one member of a set of zero-concur-
ring vectors has component one in any of the positions. A
set of concurring vectors is a set of L-concurring vectors
where L 2 1.

M(sT, s”) = c (- l)(‘T.aQ U;)
iEQ2,

J-1

+ J;O(-l)Sy c (-1)(S73$(vJ (7)
itCl,

The terminology introduced stems from the word con-
curring, encountered in the literature on ma jority logic
decoding [22]; the more commonly used term in that
context is orthogonal. Evidently, a set containing one non-
zero vector is zero-concurring. Also, a set of two indepen-
dent vectors is L-concurring for some L 2 0. For any
matrix K over GF(2) let D, be the size of a maximal
collection of pairwise-different nonzero columns of K.

Lemma 1: Let K be a J X n matrix over GF(2). There
exists a matrix row-equivalent to K and with all its rows
zero-concurring iff D, = J. Furthermore, assuming that all
the rows of K are concurring, K is not row-equivalent to
any matrix with all its rows zero-concurring iff D, =
J+ 1.

where Q2, is the (possibly empty) set {i: g,! = 0} and
Q j = {i: b(gy) = 2’) for j = 0,l; . 9, J - 1 are non-
empty sets. Rearrangement of the summation over Q2, and
over each s2, separately according to increasing value of
b(g,T) converts each sum into the ith component, where
i = b(sT), of a 2k-J-dimensional Hadamard transformed
vector UC”), resp. U(j) given by UC”) = uc”)HkdJ and
u”’ = ,,(J)HkdJ with ucrn) and u(j) being defined simi-
larly to u in (5). Thus the maximum of M(sT, sB) with
respect to all sT E GF(2)k-J and sB E GF(2)J is equal to
the largest component of Y given by

J-l

Y= max u(m) + C (-l)“Ru(i)
I

(8)
s’s GF(2)J j=O

Proof: Assuming D, = J, let K’ = (A B) be a col-
umn-permuted version of K such that A is invertible. Then
any nonzero column of B is also a column of A and
A -‘K’ = (I A -lB), where each column of A -lB con-
tains at most a single 1. Hence by inverse column permuta-
tion of A - ‘K ‘, the desired matrix is obtained. Conversely,
any J X n matrix K’ with zero-concurring rows satisfies
D,, = J, and a row operation does not affect the number
of different columns. As for the second statement, either
D, = J or D, = J + 1, because the rows obtained by
puncturing the positions where concurring occurs are either
linearly dependent or zero-concurring. Hence the result
follows by the first statement.

Assume that % possesses a set of J zero-concurring
codewords, and let

358 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-32, NO. 3, MAY 1986

. . . .

-Eli

FHT

"(J-1)
I.. . .

1 ab!

I
~:;:&/iJqi~ ? ~

Fig. 2. Block diagram illustration of Algorithm B.

where the maximum is computed componentwise. For any
vector X over the reals, let 1x1 be the vector obtained by
taking componentwise absolute value. Denote

J-l

v= U’“‘-t 1 Iu’j)l. (9)
J=o

It is easily seen that Y = V. This proves the following
optimal soft decision decoding procedure.

Algorithm B:

a) Locate the largest component of V given by (9), say
5.

b) Take for sr-the k-J bit radix-2 expansion of i and set
s/” = 0 whenever Ui(j), the ith component of U(j), is
nonnegative; otherwise, set sJ? = 1.

Fig. 2 provides block-diagram illustration of Algorithm
B. The number NB of additions required by the decoding
procedure, including calculation of absolute values, is as
follows:

NB = (J + l)(k - J)2k-J + J2k-J

= [k(J + 1) - J2]2k-J, (10)
and it is somewhat less if Q2, = 0, Thus a significant
improvement is obtained with large J. Further reduction of
computational complexity is achievable if for some j E
{(AL- . ., J - l} the number n, of elements of s2, satisfies
nj I k - J. For such j direct (rather than fast) transform
evaluation of /U(i)] requires, due to sparseness of u(j) and
repetition of entries in Ii7
alent operations. The case’:

1, only nj2”-’ addition-equiv-
co -C k - J also allows a reduc-

tion of complexity. It may happen that nj I k - J for all
j = 0,l; . .) J - 1 and also that no0 I k - J; Table I
provides some examples. Then the total number N; of
addition-equivalent operations, using direct Hadamard
transform, is given by

J-l

NL = n,2”m + c nj2”1-’ + J2k-“. (11)
j=O

The J + 1 inequalities nj I k - J can be satisfied only if
n/(J + 1) 2 k - J; this condition implies in turn (k -
1)2 2 4(n - k) and sets both lower and upper bounds on
J. By (11) we conclude that usually a large value of J is
needed for securing high efficiency.

It is evident that

(14
where d is the minimum distance of %‘. For certain codes
the foregoing bound is achievable. Maximal sets of zero-
concurring codewords for some codes where the bound is
met, for example, the Golay codes, and for some other
codes where it is impossible to attain the bound are listed
in Table I. Those lists were obtained by computer search.
A result of a more general kind is the following.

Theorem I: In V = RM(r, m), the Reed-Muller code of
order r and length n = 2”, there is a set of J = n/d =
2”‘/2 m-r = 2’ zero-concurring codewords.

Proof: Assume that r < m since otherwise W contains
all vectors of length n = 2” = 2’ and the conclusion triv-

SNYDERSAND BE'ERY: SOFTDECISIONBLOCK DECODERS 359

TABLE I
MAXIMALSETSOFZERO-CONCURRINGANDSETSOFCONCURRING CODEWORDS

Code Generator poly- nk d Zero-concurring L-concurring
nomial bound cod& words bound code words

Golay (0,1,5,6,7,9,11) 23 12 7 3 11001011001001010000000
00000000010010101001011

00110100100100000110100

Expurgated (0,2,5,8,9,10,11,12) 23 11 8 2 10100100111110000000000

Hamming (0,1,4)

Expurgated (0,2,4,5)
Hamming

BCH (0,4,6,7,B)

BCH (0,2,4,6,7,9,10,
13,17,18,20)

Expurgated (0,1,2,3,4,5,6,8,9,
BCH 11,13,14,17,19,20,2L

BCH (0,1,2,4,6,7,8)

BCH (0,1,4,5,7,8,9)

00001000000000111101101

15 11 3 5 100001000010000

010000100001000

001000010000100
000100001000010
000010000100001

15 10 4 3 101011000000000

000100000001101
000000110100010

15 7 5 3 001001001001001

010010010010010

100100100100100

31 11 11 2 any *OnzerO code
word and its com-

plement

31 10 12 2 any nonzero

codeword

17 9 5 3 11101011100000000
00010000011001100
00000100000110011

21 12 5 4 100100100100100100100

010010010010010010010

001001001001001001001

5 11000111010100000000000
01100011101010000000000

01000011000000111001000

01010011000001000010010

01001011000000000100101

010001001101000110001

6

10100100111110000000000

01010010011111000000000

00001000011110001001100
00000000011110110100001

l lOOOOObOlOOOOl
110010000000000

110100010000000
110001001000000

111000000010000

110000100000100
110000000001010

101011000000000

001010110000000
011010001000000

001110000000100
001010000100010
001010000001001

*

same as zero-concurring

*

any LWO independent

codewords
*

any TWO independent
codewords
*
partially concurring set

11101011100000000

11010001011000000
11000001000001100

00000100000110011
*
110011011100000000000

011001101110000000000
010101001100011001000

010001001100100000110

*Lengthy by nonexhaustive search

ially holds. The polynomials (1 + x)‘, where i satisfies it follows that the coefficients of each aj(x) are zero except
i < 2” and w2(i) 2 m - r,w2(i) standing for the radix-2 for one or more all-one blocks of blocklength 2”-’ that
weight of i, belong to % and are independent [23]. In start at a location which is some multiple of 2”-‘. Hence
particular, i = 2”-’ - 1 + j2”-’ for all j = 0,l; . ., the size of a collection of pairwise-different nonzero col-
2’ - 1 are eligible because ~~(2”-’ - 1) = m - r. Let umns of K is at most 2m/2m-r = 2’. However, since the
ai = (1 + ~)~“‘-‘-l+j~~-’ for j = 0,l; . .,2’ - 1, and rows of K are independent, K must possess at least 2’
let K be a 2 ’ x 2” matrix that has these codewords as its independent columns. Hence the result follows by
rows. Since Lemma 1.

Uj(X) = (1 + x) 2""-1[(1 + X)2m-']j

= (1 + x + x2 + . . . +x2m-‘-‘)(l + xZm-‘)j, (13)

For example, the RM(2,5) code has dimension k = 16,
and there exists a set of J = 4 zero-concurring codewords,
whereas for RM(3,5) the corresponding numbers are k =

360 IEEE TRANSACTIONS ON iNFORMATION THEORY, VOL. IT-32, NO. 3. MAY 1986

26 and J = 8, respectively. The computational gain is
indeed high in these cases. In general, for any fixed value
of m, J = 2’ increases monotonically with k, but k in-
creases more rapidly unless the rate is higher. Therefore,
Algorithm B is practical only for either low-rate or short
Reed-Muller codes. Presumably a similar conclusion ap-
plies to most if not all large classes of block codes. A
decoding procedure that is more useful for some higher
rate codes is developed in the next section, and an efficient
algorithm for high-rate block codes is presented elsewhere
[20].

By puncturing the set of 2’ zero-concurring codewords
introduced in the proof of Theorem 1, we obtain, provided
that r < m, a set of 2’ zero-concurring codewords for the
punctured Reed-Muller code RM*(r, m) of length n =
2’” - 1. However, for RM*(r, m)

n 2” - 1 2’- 1 --2’=
- = d 2n*-’ _ 1 2’ 2m-’ _ 1 ’

and consequently, [n/d] > 2’ whenever r 2 m/2. For a
subclass of punctured Reed-Muller codes and for many
other cyclic codes, the following result provides large,
sometimes bound-meeting, sets of zero-concurring code-
words.

Let W be cyclic, denote by g(x) and h(x) its generator
and check polynomial, respectively, and let J be a positive
divisor of n. The polynomial

1 fx” aJ(x) = 1 + XJ + x2-J + . . . +xn-J = ~
1 + xJ (14)

belongs to % if and only if 1 + xJ is a divisor of h(x).
Indeed, if the last condition holds, then a,(x)h(x) =
0 (mod x’l + 1). Conversely, for some polynomial z(x) we
have aJ(x) = z(x)g(x), but also a,(x) = g(x)h(x)/(l +
x.‘); thus by uniqueness z(x) = h(x)/(l + xJ). This im-
plies the following result.

Theorem 2: Let V be cyclic with composite blocklength
n, let J 2 2 be a divisor of n, and let a,(x) be given by
(14). The set {x&,(x): j = 0,l; . ., J - 1} is a zero-con-
curring subset of %? iff 1 + xJ is a divisor of h(x). If J
= [n/d] , where d is either the minimum distance or
designed distance of 9, then there is no subset of zero-con-
curring codewords in % with more than J elements.

The case J = 1 is intentionally excluded from Theorem
2 because by (10) the corresponding gain is negligible, a
fact congruous with the observation that every code con-
tains a set of one zero-concurring codeword. If n is odd,
then the condition h(x) = O(mod 1 + xJ) is equivalent to
the requirement that 1 + xJ and g(x) have no common
zeros. Applying Theorem 2 to the case of %? = RM*(r, m),
all we need [7, p. 3831 to do is to check that for a
satisfactorily large divisor J of n w,(in/J) 2 m - r for all
i = 1,3;.., J. Thus, for example, we find in RM*(3,6)
and RM*(4,6), respectively, bound-meeting subsets of 9
and 21 zero-concurring codewords, compared with only 8
and 16 obtained by puncturing. Application of Theorem 2
to W = BCH(n, d), the primitive BCH code of length

n = 2”’ - 1 and designed distance d, consists only of
checking that no cyclic shift of the m bit radix-2 expansion
of in/J for all i = 1,3,-a., J coincides with the radix-2
expansion of any positive integer less than d. For example,
we find in BCH(63,9) with k = 39 a bound-meeting subset
of J = 7 zero-concurring codewords, whereas for
BCH(15,5) with k = 7 the corresponding, also bound-
meeting, number is J = 3, which implies a remarkably low
computational complexity. In the nonprimitive (21,12)
BCH code, a set of J = 3 zero-concurring codewords is
found by applying Theorem 2, and it was verified by
computer search that no zero-concurring subset exists that
meets the bound 4 (see also Table I).

It is noteworthy that a set of zero-concurring codewords
derived either by Theorem 2 or (for RM(r, m)) by the
proof of Theorem 1 is suited to increase the efficiency of
Algorithm B through the use of direct Hadamard trans-
form iff n/J 2 k - J; such J exists iff k2 2 4n, and the
corresponding complexity is given by

NL = nzn/J-1 + J2kpJ.

Theorem 2 is not applicable for a cyclic code with prime
n. A possible approach in this case is to select an ap-
propriate set of integers { j} such that {x’g(x)(mod 1 +
x’l)} is a zero-concurring subset of W. For example, in the
Hamming code of length 31 with 1 n/d] = 10 generated by
g(x) = 1 + x2 + x5 we find a set of J = 8 zero-concur-
ring codewords by setting j = O,l, 7,8,14,15,21,22. Evi-
dently, for high-rate cyclic codes multiples of n - k + 1
are always eligible, but they do not necessarily constitute
the best choice. Another interesting case is a code with
composite but odd n and g(x) divisible by 1 + x. Here
one may try the set {x2j(l + x)a,(x): j = 0, l;..,
(J - 3)/2), h w ere a,(x) is given by (14); it is a zero-con-
curring subset of % whenever J 2 3, n = O(mod J), and
the zeros of (1 + xJ)/(l + x) are nonzeros of the code.
For example, in the symmetric (63,26) BCH code with
d = 14 with zeros consisting of { &: i = 0, + 1,. . . , & 5}
and the conjugates of these, where u is a primitive element
of GF(64), we find a bound-meeting set of four zero-con-
curring codewords (J = 9). However, for the expurgated
Hamming code of length n = 15, the suggested procedure
yields a set of only two codewords corresponding to J = 5,
whereas a bound-meeting set is given by {x’[(l + x3)/(1
+ x)]g(x): j = 0,5, lo}. A generally useful alternative for
the case of g(x) = 0 (mod1 + x) and odd n is to work
with ((1 + xi)a,(x): j = 1,2; . *, J - l}, where a,(x) is
given by (14); it is an n/J-concurring subset of %? for a
divisor J of n provided that (1 + xJ)/(l + x) and g(x)
have no common zeros. For example, in the abovemen-
tioned symmetric (63,26) BCH code we find a bound-
meeting set of eight seven-concurring codewords.

IV. COMPUTATIONALGAINBY EMPLOYING
CONCURRINGCODEWORDS

Assuming that %? has a set of J concurring codewords
arranged as rows of G * in (6), we obtain a modified
version of (7) that contains one additional term in its right

SNYDERS AND BE’ERY: SOFT DECISION BLOCK DECODERS 361

side, name ly,

(15)

where Q2, = {i: b(gB) = 2J - l} and !Z stands for sum-
mation modu lo-2. Also, one of the sets Q j, 0 I j I J - 1,
is possibly empty. By Lemma 1 this occurs iff G B is
row-equivalent to a matrix with zero-concurring rows. De-
fine sJ” = !Z$:,%,” and s BE = (s B s,“). Then we have (7)
with J - 1 and s,? replaced by J and s,BE, respectively.
Consequently, instead of (8) we write

Y= max
s*"EGF(2)J+'

UC”) + i (- l)“,BEU’j’ . (16)
j=O I

&y = 0

Clearly, the difference between the zero-concurring and the
concurring cases is essentially embodied in the constraint
E;=os;E = 0 that appears in (16). Denote

v = u(m) + f: IuCi) 1 (17)
j=o

and remove for a moment the constraint. Then the decod-
ing may proceed as outlined in Algorithm B by locating
first the largest component of V, say the ith; if rI$oq.(j)
2 0, then the constraint is also satisfied. On the other
hand, if rI:=oUi(‘) < 0, then to comply with the constraint,
we either keep i and change a single bit of the previously
obtained s BE, one with location I such that]1/1(‘)] is m inimal
among (/U.(j)]: j = 0 1 . . . J}, or perhaps select some
other component of V: Accdrdingly, denote

y = V, - 2 m in
j=O,l,,..,J

(Lp ((18)

for i = 0,l; . ., ZkPJ - 1 and let
x = (x0, x1; . -, X*k-JL1) (19)

where

xi = 1
K> ,Coq(J) 2 0

(20)

b6 otherwise.

Then Y = X. This proves the following optimal decoding
rule.

Algorithm C.

a>

b)

c)

Locate the largest component of X given by (20), say
the ith.
Take for sT the k - J bit radix-2 expansion of i and
set sJa = 0 if U,(j) 2 0; otherwise, set sj” = 1.
Check whether Xi = W ,. In case of a positive answer,
change a single bit of s B at a location 1 such that
]q(“] = m in { IL$(J)I: j = 0,l; . ., J}, provided such 1
exists (it may happen that]Ui(J)] <]Ui(J)(for all j =
0,l; . ., J - 1).

If GB in (6) is row-equivalent to a matrix with zero-con-
curring rows, then Xi = y for all i and Algorithm C
reduces to Algorithm B. Excluding that singular case from

the discussion, the number of additions required for calcu-
lating V is (J + 2)(k - J)2k-J + (J + 1)2k-J, and not
more than (J + 2)2k-J additions are needed for obtaining
{ W i: i = 0,l; . ., 2k-J - l} (actually half of this number
is enough on the average since not all I& are used). To
check the conditions in (20) we perform for each i a logic
AND operation on one word of length J + 1 that contains
the most significant bit in twos-complement representation
of ~!$j) for j = 0, 1,. . ., J. The total addition-equivalent
computational complexity (for the case Q2, # 0) is thus

NC = [k(J + 2) - J* + 4]2k-J. (21)
If ni<k-Jforall j~{0,1;*.,J} and n,<k-J,
then the reduced complexity N& of Algorithm C, which
corresponds to calculation of V by direct Hadamard
transform, is given by

Ng = n,2”m + i nj2”j-’ + (25 + 4)2k-J. (22)
j=O

A mean ingful comparison of NB and N; with N,, N;
has to be performed for some fixed code rather than for
some J. In certain codes it may be easier to find a large set
of concurring codewords than a zero-concurring subset of
the same size (expurgated codes and symmetric BCH codes,
ment ioned in Section III are examples). Moreover, many
codes contain considerably more concurring than zero-con-
curring codewords. A comparison of the efficiency of all
the algorithms presented heretofore, as well as Wo lf’s
method [ll], is exhibited for a few codes in the following
table. Values of J and nj for computation of NB, N;, No,
and N; were obtained from Table I. For all but the (15,
10) code, mod ified versions of (10) and (21), with the right
side of each reduced by (k - J)2k-J, were used. Based on
the structure of the trellis and the number [ll, p. 781 of its
nodes, evaluation of all node values in Wo lf’s method
requires

N, = (2k - n + 2)2”-kf’ - 6

additions, except in case of the (15, 7) code where the
expurgated trellis is not fully stretched.

Code

Golay 23 12 7 49152 15360 4032 7168 1964 12282
Hamming 15 11 3 22528 2240 380 800 317 282
Expurgated

Hamming 15 10 4 10240 3968 504 768 286 442
BCH 15 7 5 896 240 288 240 288 634
BCH 21 12 5 49152 15360 2880 7168 1924 5114

The complexity of maximization, excluded from considera-
tion up to here, is given for the algorithms developed
earlier by 2 - k J - 1 (with J = 0 for Algorithm A); this
amounts to less than ten percent of Nd and, for all but the
(15,10) code, less than 20 percent of N& In Wo lf’s method
partial maximizations, that is, selection of a survivor at
each node, require altogether 127 addition-equivalent oper-
ations for the (15,7) code (i.e., 20 percent of N,) and
(2k - n + l)2”-k - 1 comparisons, which represent an in-
crease of - 40 percent in complexity, for the other codes.

Concurr ing sets were usually explored in the context of
ma jority logic decoding. The following result is evident in
view of (21).

362 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-32, NO. 3, MAY 1986

Theorem 3: Suppose that W ’ , the dual code of Q?, can
correct e =] J/2] errors by (possibly multiple-step)
majority logic decoding using J parity check equations.
Then W can be optimally decoded by FHT with complexity
of the order 0(2k-J).

_ _

Theorem 4: The number J1 of one-concurring and the
number J2 of concurring codewords in V with minimum
distance d satisfy

For a proof see [7, pp. 390-3931. The bounds presented
so far are related as follows:

n n-l 2n

Because RM(r, m) = RM(m - r - 1, m) ’ , provided that
r < m [7, p. 3751, we conclude by Theorem 3 and [7, p.
3931 that J2 2 2’+l - 1 in &M(r, m). Thus by Theorem 4
the following result is implied.

Theorem 5: In RM(r, m) there exists a set of J2 = 2n/d
- 1 = 2’+1 - 1 concurring codewords.

By puncturing the set of concurring codewords in-
troduced in Theorem 5, we obtain, provided that r < m, a
set of 2’+l - 1 concurring codewords for RM*(r, m).
Since for the punctured code

2(2’ - 1)
- (2’+1 - 1) = 2”~’ _ 1)

it follows that [2n/d - 11 = 2’+l - 1 whenever r s (m
- 1)/2. Because RM*(r, m) c BCH(2m - 1,2”-’ - 1)
we also have a set of 2(n + l)/(d + 1) - 1 concurring
codewords for BCH(n, d) with n = 2” - 1 and designed ~

Fig. 3. Iterative version of Algorithm C.

distance d = 2”-’ - 1, and this set meets the bound
[2n/d - l] if n < d(d + 3)/2. Similarly, because
RM(r, m) is included in the extended BCH code with
n = 2” and d = 2”-’ - 1, it follows that the latter code
has a set of 2n/(d + 1) - 1 concurring codewords which
is bound-meeting if n < d(d + 1)/2.

algorithm is preferable whenever Ni, < J + 3; this de-
mands high signal-to-noise ratio. On the other hand, N;
= @U-J>> in the worst case, that is, when decoding
ends at iteration Ni, = 2k-J, implying that in case of a very
noisy channel Algorithm C is faster.

An iterative version of Algorithm C, owning increased
computational gain in case of high signal-to-noise ratio, is
illustrated by a flowchart in Fig. 3. The idea is to econo-
mize in the computation of {IV.} by replacing step a) by an
iterative procedure.

The iterative version has a pronounced advantage when
the feedback path is used only a few times. Indeed, the
number of additions required for calculating V is the same
as in Algorithm C, and the number of addition-equivalent
operations needed for each of the first few iterations is
approximately 2k-J + J + 3 = 2kPJ (actually the number
decreases by one with each iteration). Altogether there are
about

NC’ = [(J + 2)(k -J) + J + 1 + Nit]2k-J

operations, where Ni, is the number of iterations. Upon
comparing NC’ with N,, we conclude that the iterative

evaluate T as in step(b)

of Algorithm C

An algorithm that suits a relaxed type of concurrence is
obtainable by slightly modifying the derivation of Al-
gorithm C.

Definition 2: A set of J independent vectors in GF(2”)
is partially concurring if

1) in each of some L 2 1 positions at least one of the J
vectors have component one and the rest (if any)
have component zero, and

2) in all other positions at most one of the J vectors has
component one.

A set of J = 2 partially concurring vectors that is not
(strictly) concurring is necessarily zero-concurring. Also, by
modifying the proof of the bound on J2 in Theorem 4, it
may be shown that the number J3 of partially concurring
codewords satisfies

I 2n I
J,I d -1.

Ll

SNYDERS AND BE’ERY: SOFT DECISION BLOCK DECODERS 363

Nevertheless, J3 2 J2 and in some codes J3 > J2. A proof
similar to that of Lemma 1 yields the following result.

Lemma 2: A J X n matrix K over GF(2) with J par-
tially concurring rows is not row-equivalent to any matrix
with all its rows zero-concurring iff D, = J + 1.

Assuming that 9 has a set of J partially concurring
codewords, we again have (7) with one more term similar
to that given by (15) added to its right side, but with ti2,
appropriately defined and Ef~is,s replaced by a partial
sum of the bits of s B, say E:r E +Y~. Denoting sJ” = E, E 9.sF
and sBE = (sB sJ), this leads to (16) with the mod ified
constraint !ZJ E+,!E = 0, where 9= 9’ U {J}. Subse-
quently, W , and Xi are defined as before but with
{O,L. . *> J } replaced by 9. The resulting decoding al-
gorithm is therefore unchanged except for the replacement
of {O,l; . -, J} by 9 in step c). The computational com-
plexity in this case is upperbounded by the right side of
(21) because { y } and { X,} are more easily obtained if 9
contains less than J + 1 numbers. It is also possible to
develop an iterative algorithm for the partially concurring
case.

V. AN ALGORITHMWITHREDUCED
MEMORYREQUIREMENT

Aside from the computational gains, Algorithms B and
C incorporate a relaxed memory requirement owing to the
decreased dimension of the Hadamard transformation. We
describe here a more effective approach for reaching the
latter goal. Consider an arbitrary partitioning (6) of G
where GT is a Q x n matrix and apply the subsequently
introduced notation for rewriting (2) as follows:

1, - 1
M(S) = c (- 1)(STJ) (-l)cZB’aP)p(u,). (23)

I=0
Let

ww)p(C,),
u(‘) =

1

,z t-11 A,+ 0
I / (24)

0, Aj= 0

where Aj = {I: b(gT) =j} for j = 0,1;..,2Q- 1 and
i = b(sB). Thus

2Q-1
jqs) = c (- l)(W),:i,

(25)
j=O

where g,r* E GF(2) Q is defined by j = b(gT*) for j =
0,l; + ., 2O - 1. Denote ~(~1 = (tit) uji) . . . u$~,) and

u(i) = u(‘)H
Q' i = O ,l;.. ,2k-Q - 1. (26)

Evidently, the maximum of M(s) given by (25) with re-
spect to all s E GF(2)k is equal to the maximum among
the largest components of all U(j) defined by (26). This
implies the following optimal soft decision decoding proce-
dure.

Algorithm D:

a) Locate the largest component of UC’) given by (26)
for each i = 0,l; 3 a, 2k-Q - 1.

b) Identify the index corresponding to the largest of all
numbers obtained in step a), say i; then denote by j
the location of the largest component of U(‘).

c) Take for sT the Q-bit radix-2 expansion of j. For sB
take the k - Q bit radix-2 expansion of i.

Except for the computations prescribed by (24) and the
maximizations (with total negligible complexity equal ing
that of the single overall maximization in previous decod-
ing procedures), Algorithm D performed by FHT requires
2k-Q . Q2Q = Q2k additions. However, in contrast to pre-
vious cases the computation of the mod ified labels UJ(i)
may be quite cumbersome unless proper care is taken. If
GT is selected so that its columns are pairwise-different,
then, with (24) entailing merely sign changes of negligible
complexity, a computational gain of nearly k/Q relative to
Algorithm A results. However, compliance of GT with the
foregoing condition confines Q to sufficiently large values;
certainly Q < log, n is prohibited. An important feature of
Algorithm D is the significant memory reduction achiev-
able by excecuting the Hadamard transforms (26) sequen-
tially; this consideration lim its Q to reasonably small
values. As a compromise one may take Q = log, n, usually
enabl ing the choice of GT that has only a few columns
listed in more than one location, though for the purpose of
hardware realization it seems to be preferable to provide
more regularity by setting Q large enough such that no
additions occur in the precomputat ion of mod ified labels.

Consider %? = RM(r, m), and take Q = m + 1. Then
Q > m = log, n, and indeed a submatrix GT exists, the
generator of RM(1, m), whose columns are all the 2”
distinct m-tuples with a l-bit annexed at a fixed location
[7, p. 3731. Therefore, RM(r, m) is decodable either
by operating 2 k-m-1 RM(1, m) decoders (e.g., Green
machines) in parallel or by performing RM(1, m) decoding
2” ~ n’- ’ times by a single apparatus, followed by steps b)
and c). The sequential processing accommodates a memory
reduction by a factor of approximately 2k/2”+’ = 2’-“-l
and also a computational gain of k/(m + 1) relative to
Algorithm A. By taking advantage of the row-equivalence
of GT to a matrix with two zero-concurring rows (implied
by Theorem 1, also obvious from the presence of the
all-one row), the memory and computational gains become
nearly 2kPm+1 and 4k/(3m - l), respectively. Further im-
provement is obtained by taking into account the existence
of three concurring codewords (Theorem 5) in RM(1, m),
yielding reduction of memory requirement by a factor close
to 2k-m+2 and computational gain of 9k/(5m). In con-
trast, by adopting GT whose columns are all the 2m distinct
m-tuples, the resulting numbers are 2k-” and k/m, respec-
tively, and no further improvement is evident.

As illustrated earlier, combination of Algorithm D with
Algorithm B or C may yield fruitful results. It is also
noteworthy that a column of GT that appears in several
locations but always above a zero column of G B induces
only a slight computational complexity, because for the
corresponding value of j the labels ~(~1 are all equal,
irrespective of the value of i.

364 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-32, NO. 3, MAY 1986

ACKNOWLEDGMENT

The authors are indebted to Nathan Zimerman and
Aner Shalev for their contribution to the development of
Algorithm A, Amir Dembo for several helpful discussions,
and a reviewer for constructive comments. Jakov Snyders
wishes to acknowledge with thanks the hospitality of
McGill University, where part of this paper was written.

REFERENCES

[l] R. R. Green, “A serial orthogonal decoder,” JPL Space Program
Summary, vol. IV, no. 31-39, pp. 241-253, 1966.

PI -3 “Analysis of a serial orthogonal decoder,” JPL Space Pro-
gram Summary, vol. III, no. 37-53, pp. 185-187, 1968.

[3] J. 0. Duffy, “Detailed design of a Reed-Muller (32, 6) block
encoder,” JPL Space Program Summary, vol. III, no. 31-41, pp.
263-261, 1961.

[4] E. C. Posner, “Combinatorial structure in planetary reconaissance,”
in Error Correcting Codes, H. B. Mann, Ed. New York: Wiley,
1969, pp. 15-46. -

[5] C. K. Rushforth, “Fast Fourier-Hadamard decoding of orthogonal
codes.” Inform. Contr., vol. 15, DD. 33-31, 1969.

[6] H. J. Manley, H. F. Mattson Jr.,-and J. R. Schatz, “Some applica-
tions of Good’s theorem,” IEEE Trans. Inform. Theory, vol. IT-26,
pp. 475-476, 1980.

[7] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error
Correcting Codes. Amsterdam, The Netherlands: North-Holland,
1911.

181 M. Cohn and A. Lemnel, “On fast M-sequence transforms,” IEEE . _
Trans. Inform. Theory, vol. IT-23, pp. 135-137, 1977.

[9] V. V. Losev and V. D. Dvornikov, “Fast Walsh decoding of
maximum length codes,” Radio Tek. El., vol. 24, pp. 630-632,
1979.

[lo] G. C. Clark, Jr., and R. C. Davis, “A decoding algorithm for group

Vll

WI

P31

v71

[181

[I91

WI

WI

P21

~231

~241

codes and convolution codes based on the fast Fourier-Hadamard
transform,” presented at the IEEE 1969 Int. Symp. Information
Theory, Ellenville, NY.
J. K. Wolf, “Efficient maximum likelihood decoding of linear block
codes,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 76-80, 1978.
C. R. P. Hartmann and L. D. Rudolph, “An optimum symbol-
by-symbol decoding rule for linear codes,” IEEE Trans. Inform.
Theory, vol. IT-22, pp. 514-517,1976.
L. D. Rudolph, C. R. P. Hartmann, T. Y. Hwang, and N. Q. Due,
“Algebraic analog decoding of linear binary codes,” IEEE Trans.
Inform. Theory, vol. IT-25, pp. 430-440, 1979.
G. R. Redinbo, “Optimum soft decision decoding with graceful
degradation,” Inform. Contr., vol. 41, pp. 165-185, 1979.
-, “ Optimal symbol-by-symbol mean-square error channel cod-
ing,” IEEE Trans. Inform. Theory, vol. ITT25, pp. 387-405, 1979.
K. R. Matis and J. W. Modestino. “Reduced-search soft-decision
trellis decoding of linear block codes,” IEEE Trans. Inform. The-
ory, vol. IT-28 pp. 349-355, 1982.
E. R. Berlekamp, “The construction of fast, high-rate, soft decision
block decoders,” IEEE Trans. Inform. Theory, vol. IT-29, pp.
372-311, 1983.
H. Tanaka and K. Kakigahara, “Simplified correlation decoding by
selecting possible codewords using erasure information,” IEEE
Trans. Inform. Theory, vol. IT-29, pp. 143-148, 1983.
G. Seroussi and A. Lempel, “Maximum likelihood decoding of
certain Reed-Muller codes,” IEEE Trans. Inform. Theory, vol.
IT-29, pp. 44%450,1983.
Y. Be’ery and J. Snyders, “A recursive Hadamard transform opti-
mal soft-decision decoding algorithm,” to be published.
D. F. Elliot and K. R. Rao. Fast Transforms, Algorithms, Analyses,
Applications. New York: Academic, 1982, pp. 313-317. .
R. E. Blahut, Theory and Practice of Error Control Codes. Reading,
MA: Addison-Wesley, 1983, p. 392.
J. L. Massey, D. J. Costello, Jr., and J. Justesen, “Polynomial
weights and code construction,” IEEE Trans. Inform. Theory, vol.
IT-19, pp. 101-110,1973.
L. B. Levitin and C. R. P. Hartmann, “A new approach to the
general minimum distance decoding problem: the zero-neighbors
algorithm,” IEEE Trans. Inform. Theory, vol. IT-31, no. 3, pp.
378-384, May 1985.

