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A Note on Nonlinear Xing Codes

Yaron Shany and Yair Be’ery, Senior Member, IEEE

Abstract—Nonlinear Xing codes are considered. It is shown that Xing
codes of length 1 (where is a prime) are subcodes of cosets of
Reed–Solomon codes whose minimum distance equals Xing’s lower bound
on the minimum distance. This provides a straightforward proof for the
lower bound on the minimum distance of the codes. The alphabet size
of Xing codes is restricted not to be larger than the characteristic of the
relevant finite field . It is shown that codes with the same length and the
same lower bounds on the size and minimum distance as Xing codes exist
for any alphabet size not exceeding the size of the relevant finite field,
thus extending Xing’s results.

Index Terms—Reed–Solomon codes, Xing codes.

I. INTRODUCTION

In a recent paper [1], a new class of nonlinear codes with good pa-
rameters was presented. To find a lower bound on the minimum dis-
tance of the new codes, Xing used the deep Hurwitz genus formula
from the theory of algebraic function fields. In Section II of this note,
we show that Xing codes of length p � 1 are subcodes of cosets of
Reed–Solomon codes whose minimum distance is exactly the lower
bound found by Xing. This gives a more straightforward proof for the
lower bound on the minimum distance of these codes, and may hint on
encoding and decoding techniques.

The alphabet size of Xing codes is restricted not to be larger than
the characteristic p of the relevant finite field r . In Section III of this
note, we prove the existence of codes with the same length and the
same lower bounds on the size and minimum distance as Xing codes
for any alphabet size not exceeding r, thus generalizing Xing’s results.
Moreover, our proof, which is based only on elementary coding theory,
is almost trivial.

II. XING CODES AND REED–SOLOMON CODES

We begin by briefly describing Xing codes. Let r = pm for some
prime p and some positive integer m. For a commutative ring R with
identity, we write R� for the multiplicative group consisting of all el-
ements of R with a multiplicative inverse. Write

�

r = f�1; �2; . . . ; �r�1g:

Let q � p be a positive integer. Let d, 1 � d � r � 1, be an integer
and define a map

�q:

r�1
q ! ( r[x]=(x

d))�= �

r

(c1; c2; . . . ; cr�1) 7!
r�1

i=1
(x� �i)c ;

where here p is the ring (field) f0; 1; . . . ; p � 1g with addition
and multiplication modulo p, and if q < p, q stands for the subset
f0; 1; . . . ; q�1g of p without any associated algebraic structure. For
z 2 im(�q), we set Cq(z; r; d) := ��1q (z). Let z0 2 im(�q) be such
that j��1q (z0)j attains the maximum of fj��1q (z)kz 2 im(�q)jg, and
define Cq(r; d) := ��1q (z0). Since j( r[x]=(x

d))�= �

r j = rd�1 and
j r�1

q j = qr�1, it follows that jCq(r; d)j � qr�1=rd�1. Using the
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Hurwitz genus formula, Xing also showed that the minimum distance1

of Cq(z; r; d) is not less than d for any z 2 im(�q), and hence also
the minimum distance of Cq(r; d) is not less then d. This establishes
the existence of an (r � 1;� qr�1=rd�1;� d) code over q , where
the notation (n;M; d) code stands for a code of length n, size M , and
minimum distance d.

Let RSr(d) be the [r � 1; r � d; d] Reed–Solomon code over r ,
where the notation [n; k; d] code stands for a linear code of length n,
dimension k, and minimum distance d. For the rest of this section, we
shall focus on the case where r = p. Note that [1, Corollary 2.4] and
all of the examples in Xing’s paper correspond to this case. Our main
result in this section is the following theorem.

Theorem 1: The codeCq(p; d) is contained in a coset of RSp(d) for
some coordinate ordering of RSp(d).

Before proving this theorem, we need the following technical
lemma.

Lemma 1: Let

P (x) :=

p�1

i=1

(x� �i)
c 2 p[x]

(for c1; c2; . . . ; cp�1 2 p = p), and let D be the formal derivative.
Then for any positive integer j � p � 1

(DjP )(0) = k

p�1

i=1

ci�
j
i +Qj

p�1

i=1

ci�i;

p�1

i=1

ci�
2
i ; . . . ;

p�1

i=1

ci�
j�1
i

where 0 6= k 2 p, �i = ���1
i for i 2 f1; 2; . . . ; p � 1g, and

Qj 2 p[x1; x2; . . . ; xj�1] is such that Qj(0; 0; . . . ; 0) = 0.
Proof: Write n := p � 1. For a vector d 2 n

p and for i 2
f1; 2; . . . ; ng, we write di for the ith component of d. In addition, for
l 2 f1; 2; . . . ; ng, we let c(l) be the vector d 2 n

p with

dl =
cl � 1; if cl 6= 0

0; if cl = 0

and di = ci for i 2 f1; 2; . . . ; ng, i 6= l. As

c(l )
(l )

= c(l )
(l )

for any l1; l2 2 f1; 2; . . . ; ng, we shall simply write c(l ;l ) for ei-
ther of these (identical) vectors. The vector c(l ;l ;...;l ) is defined in
a similar way for any positive integer m � n and any l1; l2; . . . ; lm 2
f1; 2; . . . ; ng. Now, it can be verified by induction that

DjP =

(i ;i ;...;i )2f1;2;...;p�1g

ci c
(i )
i c

(i ;i )
i � � � c

(i ;i ;...;i )

i

�

p�1

m=1

(x � �m)c

and hence, we get (1) at the top of the following page. For
l 2 f2; 3; . . . ; jg, each expression of the form c

(i ;i ;...;i )

i in (1)
can be replaced by2 ci � �i ;i � �i ;i � � � � � �i ;i , where for
integers u, v, �u;v equals 1 if u = v and 0 otherwise. Since the
coefficient of �i ;i ;...;i (which, by definition, equals 1 if all the

1Here, the term “minimum distance” stands for minimum Hamming distance.
2Note that the alternative expression is not necessary equal to the original

expression, but the replacement is still legal.
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(DjP )(0) =

p�1

m=1

(��m)c

(i ;i ;...;i )2f1;2;...;p�1g

ci c
(i )
i c

(i ;i )
i � � � c

(i ;i ;...;i )

i �i �i � � � �ij : (1)

arguments are identical and 0 otherwise) in (1) is (j � 1)! 6= 0, the
assertion follows.

Proof of Theorem 1: Observe first that for positive integers q1 <
q2 � p, and for a fixed z 2 im(�q ),Cq (z; p; d) � Cq (z; p; d) (this
follows immediately from the definition of these codes). Therefore, to
prove the assertion, it is sufficient to show that Cp(z; p; d) is a coset of
RSp(d) for every z 2 im(�p). To this end, observe that �p is a homo-
morphism from the additive group r�1

p = r�1
p to the multiplicative

group ( p[x]=(x
d))�= �

p . To see this, note that since d < p, it fol-
lows that in ( p[x]=(x

d))�= �
p

(x+ �)p = xp + �p = 1

for any � 2 �
p . So, in order to establish the theorem, it is sufficient

to show that Cp(1; p; d) is equal to RSp(d) up to a permutation. As
before, let us write n = p � 1. A vector c 2 n

p is in Cp(1; p; d) iff
the coefficients of x; x2; . . . ; xd�1 in

P (x) =

p�1

i=1

(x� �i)
c 2 p[x]

are all zero. Since j! 6= 0 in p for any positive integer j � p� 1, the
above condition is equivalent to

(DP )(0) = 0; (D2P )(0) = 0; . . . ; (Dd�1P )(0) = 0:

Therefore, it follows from Lemma 1 that c 2 Cp(1; p; d) iff

n

i=1

ci�
j
i = 0

for j = 1; 2; . . . ; d� 1, which establishes the proof.

Note that the last assertion of the proof resembles the proof of Propo-
sition 1 in [2]. Note also that the case d < p < r can be treated in a
similar way, replacing RSp(d) by the Bose–Chaudhuri–Hocquenghem
(BCH) code RSr(d) \ r�1

p .

III. EXTENDING XING’S RESULTS

In the following theorem we show that Xing’s existence results can
be extended to comply with larger alphabet sizes. As before, the idea
is to consider subcodes of Reed–Solomon codes.

Theorem 2: Let A � r , set q := jAj, and let d � r � 1 be a
positive integer. Then there exists an (r � 1;M; d0) code over A with
M � qr�1=rd�1 and d0 � d.

Proof: Put n := r � 1 and k := r � d. Let H be a parity-check
matrix for RSr(d), and consider the map

� : An ! n�k
r

v 7! Hvt

where vt stands for v transposed. Since jAnj=qn and jim(�)j�rn�k,
it follows that there is an element u2 im(�) with

j��1(u)j � qn=rn�k = qr�1=rd�1:

Define C := ��1(u). Then C has the desired parameters, as C is
contained in a single coset of RSr(d) in n

r .

Remark 1: Note that Theorem 2 does not imply that Xing’s codes
are necessarily contained in a coset of a Reed–Solomon code when
d � p. Note also that by replacing the Reed–Solomon code by a non-
maximum-distance separable (MDS) code in the proof of Theorem 2,
it is possible to obtain codes of lengths other than r� 1 at the price of
a reduced size.

Remark 2: If q = pm , where m1 < m is an integer dividing m,
and A = p � r = p , then it is interesting to compare the
lower bound on M from Theorem 2 to the known lower bound on the
size of the BCH code RSr(d) \ Ar�1 (which, in this case, equals the
pre-image of 0 in Theorem 2). The dimension of the BCH code over
p is not less than (r � 1)� (d� 1)m=m1, since this dimension

equals (r�1)�degQ, whereQ is the least common multiplier (l.c.m.)
of d� 1 minimal polynomials of elements of r = p over p .
This simple lower bound on the dimension of the BCH code gives the
same lower bound as Theorem 2 on the size, i.e.,

M � pm ((r�1)�(d�1)m=m ):

Since by the definition of the code from Theorem 2 its size is not
smaller than that of the BCH code,3 this means that for the choice of
jAj = pm the lower bound presented in the theorem is probably not
tight (especially in the cases where the above bound on the dimension
of the BCH code is not tight, see [3, Ch. 9]). However, as demonstrated
by Xing [1], there exist cases where the lower bound of Theorem 2
is slightly larger than the size of any known linear code. In fact, it is
also possible to find cases where q > p and the bound of Theorem
2 is slightly larger than the size of any known linear code. For ex-
ample, for q = 9 and r = 72, Theorem 2 implies the existence of
a (48;� 932:0588; 10) code over an alphabet of nine elements, while
the largest known linear code over 9 of minimum distance 10 has di-
mension 32 [4].
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3Actually, under the above assumptions the size of the code from Theorem 2
equals the size of the BCH code, because is an -linear map.


