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Reed–Muller Codes: Projections onto GF and
Multilevel Construction

Ofer Amrani, Member, IEEE,and Yair Be’ery, Senior Member, IEEE

Abstract—A projection of binary Reed–Muller codes ( ) onto
GF (4) is presented. For an ( ) code, this operation yields a
linear quaternary code with the same length, dimension, and minimum dis-
tance as the Reed–Muller ( 1 2) code. Based upon this projec-
tion, multilevel construction is given for ( ), where the constituent
codes applied to the different levels are themselves the Reed–Muller codes

( 2 2) and ( 2), as well as the aforementioned
quaternary code. This construction of Reed–Muller codes is readily appli-
cable for their efficient decoding.

Index Terms—Mapping, multilevel, multistage, projection, Reed–Muller
codes.

I. INTRODUCTION

The continuing search focusing on new constructions of known bi-
nary block codes is a most interesting theoretical problem but may also
prove beneficial from the practical viewpoint. Different constructions
can lead to different decoding algorithms, hence, for practical applica-
tions, one is interested in those constructions that assist in the reduction
of the decoding complexity. The pioneering work of Hammonset al.
[9] and Forneyet al. [8] are two such examples. They state that cer-
tain outstanding nonlinear binary codes can be constructed from ap-
propriate linear codes over the integer residue ringZ4 by using the
so-called Gray mapping. Thus, clearly, one can more easily decode the
Z4-linear version rather than the original nonlinear binary code. An-
other interesting example, closer related to the current work, is the Pless
construction of the Golay code [13]. It is based on projecting the binary
codewords onto GF(4), a construction which led to some of the most
practically attractive soft-decision algorithms for the Golay code and
the related Leech lattice [1], [16]. The projection idea has also been
successfully employed for the construction and efficient soft decoding
of the extended quadratic residue code of length32 [18] and the Nord-
strom–Robinson code [15].

Binary Reed–Muller codes are among the most prominent families
of codes in coding theory. They have been extensively studied and
employed for practical applications. In this work, a general three-level
construction of Reed–Muller codes is presented, based upon the
projection of the binary codewords onto codes over GF(4). Interest-
ingly, for a binary Reed–Muller codeR(r; m), the parameters of the
projected code over GF(4) are similar to those of the Reed–Muller
R(r�1; m�2) code; furthermore, the codes applied to the other two
levels of the construction are the Reed–Muller codesR(r�2; m�2)
andR(r; m � 2). Note that the parameters of the three constituent
codes are the same as in Forney’s two-level squaring construction of
R(r; m) [7] except that all the constituent codes in [7] are binary.

As in the case of the Golay codes, the proposed construction and,
in particular, the projection onto linear codes over GF(4), should en-
able efficient maximum-likelihood and multistage soft decoding of the
Reed–Muller codes. Some examples and complexity considerations are
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discussed. This should also makeR(r; m) codes attractive candidates
for Block turbo-code schemes, i.e., product codes with iterative de-
coding [14]. Moreover, since the family of Barnes–Wall lattices are
closely related to Reed–Muller codes [5], [6], the same construction
can be employed for generating these lattices and for their efficient soft
decoding. Nonlinear relatives of the Reed–Muller codes may also ben-
efit from this construction which would make them easier to decode
[15], [2].

Finally, it is noteworthy that 1) Reed–Muller codes are usually not
Z4-linear [9], [10], though they may be regarded as “GF(4)-linear”
for any r andm; 2) when they are indeedZ4-linear, the number of
Z4 codewords is the same as the number of binary codewords in the
Reed–Muller code due to the one-to-one mapping, while the number
of codewords over GF(4) is considerably smaller due to the projection
operation.

In the next section, the projection of binary sequences onto GF(4)
is briefly described and some simple Reed–Muller codes are defined in
order to demonstrate the main ideas behind the proposed construction.
A more formal mathematical definition of this construction, based on
the definition of Reed–Muller codes in terms of Boolean functions, is
given in Section III for all Reed–Muller codesR(r; m). Several dif-
ferent representations of the obtained construction are also described.
Finally, decoding complexity issues and further considerations are dis-
cussed in Section IV.

II. PRELIMINARIES AND SIMPLE CONSTRUCTIONS

Hereafter, the elements of GF(4) = f0; 1; ���; ���g will be referred
to assymbols. A binary four-tupleb = (b1; b2; b3; b4)

t with the scalar
product

(0; 1; ���; ���) � b = � 2 GF(4) (1)

will be called abinary imageof �. Conversely,� will be called the
projectionof the binary four-tupleb. Clearly, each GF(4) symbol has
two complementary even-weight and two complementary odd-weight
images.

Letbbb = (b1; b2; . . . ; bn) be a binary vector of lengthn divisible by
4, and arrange its elements in a four rows byn

4
columns,4� n

4
, array

bbb =

b1 b5 bn�3

b2 b6 bn�2

b3 b7 . . . bn�1

b4 b8 bn

: (2)

The projection of this array onto GF(4) is obtained by taking the
n

4
projections of the columns. A column will be said to be of type

even, or simply even, if its Hamming weight is even. Otherwise, the
column will be said to beodd. The sum of two columns is defined as
the component-wise modulo-2 addition of the column’s elements.

Finally, recall that for any two integersr and m satisfying
0 � r � m, there is a binaryrth-order Reed–Muller codeR(r; m)
with the following [n; k; d] parameters: lengthn = 2m; dimension
k = r

i=0

m

i
; and minimum distanced = 2m�r. Next, we construct

some simple binary Reed–Muller codes based on the notation above.
R(m; m) contains all the vectors of lengthn = 2m, i.e., it is the

[2m; 2m; 1] Universe code. Its definition is straightforward.

Proposition 1: The R(m; m) code,m � 2, is the set of all
the 4 � 2m�2 binary arrays whose projection is a codeword of the
[2m�2; 2m�2; 1] Universe code over GF(4).

The zero-order Reed–Muller codeR(0; m) is the repetition code
with parameters[2m; 1; 2m].

Proposition 2: TheR(0; m) code,m � 2, is the set of all the
4 � 2m�2 binary arrays, such that each array satisfies the following
conditions.

a) It consists of only even columns.

b) The projection of the array is the all-zero vector over GF(4)2 .

c) The top row is a codeword of the binaryR(0; m� 2) code.

It is easy to verify that Proposition 2 generates the all-zero and the
all-one vectors of length2m by recalling that the even binary image
of 0 2 GF(4) is either0000 or 1111, and also that the two possible
codewords ofR(0; m � 2) are the all-zero and the all-one vectors.
The above propositions are easily generalized to all codes with length
divisible by4.
R(m�1; m) is a[2m; 2m�1; 2] code consisting of all even-weight

vectors. This family of single parity-check codes can be constructed as
follows.

Proposition 3: TheR(m � 1; m) code,m � 2, is the set of all
the4�2m�2 binary arrays, such that each array satisfies the following
conditions:

a) the number of odd columns is even;

b) the projection of the array is a codeword of the[2m�2; 2m�2; 1]
Universe code over GF(4).

Proof: Follows immediately from the fact the this definition gen-
erates all possible binary words of even weight, due to conditions b) and
a) respectively.

An alternative approach to the proof is discussed in Section III.
Note that the following may be regarded as an (additional) condi-
tion c) for Proposition 3: the top row is a codeword of the binary
R(m� 2; m� 2) code. Since theR(m� 2; m� 2) is the Universe
code [2m�2; 2m�2; 1], this condition is redundant and was hence
omitted.

Proposition 3 is easily extended for constructing all single parity-
check codes of length4i, i being a positive integer. Each of these codes
is defined as the set of all the4�i binary arrays, such that each array sat-
isfies the following conditions: a) the number of odd columns is even;
b) the projection of the array is a codeword of the[i; i; 1] Universe
code over GF(4). The above proof also holds true for these codes.

III. R(r; m): DEFINITION AND MULTILEVEL CONSTRUCTION

It is well known that Reed–Muller codes can be defined very simply
in terms of Boolean polynomials. Letv1; v2; . . . ; vm, bem binary
variables and letf denote a Boolean polynomial in thesem variables.
fff(f) is a vector of length2m corresponding tof which, in the standard
bit ordering [11], is given by

fff(f) = (f(0); f(1); f(2); . . . ; f(2mm
m
� 1)): (3)

Fornnn = 0; 1; . . . ; 2m�1, (n1; n2; . . . ; nm) is the binary expansion
of lengthm of nnn satisfying

nnn =

m�1

i=0

ni+12
i

andf(nnn) is the value of the polynomialf evaluated at

(v1; v2; . . . ; vm) = (n1; n2; . . . ; nm):

Definition [12]: Therth-order binary Reed–Muller codeR(r; m)
of lengthn = 2m, for 0 � r � m is the set of all vectorsfff(f),
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wheref is a Boolean polynomial inm variables of degree at mostr.
In other words, ifRf(r; m) denotes the set of Boolean polynomial in
m variables of degree at mostr, then

R(r; m) : = ffff(f) : f 2 Rf (r; m)g:

The proposed construction is based on dividing the bit positions into
groups of four as in (2), thus, (3) becomes

f(0) f(4) � � � f(4kkk) � � � f(2mmm � 4)

f(1) f(5) � � � f(4kkk + 1) � � � f(2mmm � 3)

f(2) f(6) � � � f(4kkk + 2) � � � f(2mmm � 2)

f(3) f(7) � � � f(4kkk + 3) � � � f(2mmm � 1)

: (4)

This grouping amounts to fixing a certain value for the variables
v3; v4; . . . ; vm, and allowing the remaining coordinatesv1 and
v2 to take all the possible values. Thus, we immediately observe
that: A) the variables in the first row of (4) are all multiples of4,
hencev1 = v2 = 0 for all of these variables; B) in the second row
v1 = 1; v2 = 0; C) in the third rowv1 = 0; v2 = 1; D) in the fourth
row v1 = v2 = 1; E) in each of the four rows, the binary variables
v3; v4; . . . ; vm take all the possible values.

As described in Section II, each column in (4) can be projected on
GF(4), namely, obtain an element in GF(4) that may be represented by
its coefficients with respect to the basisf1; ���g. Based on the proposed
grouping and the representation over GF(4) (1), we shall now describe
four different projection mappings.

• TOP the mapping of a block of four bits to its first element

TOP(b1; b2; b3; b4) = b1;

• PPP 1 the coefficient of1 in the GF(4)-domain

PPP 1(b1; b2; b3; b4) = b2 + b4;

• PPP��� the coefficient of��� in the GF(4)-domain

PPP���(b1; b2; b3; b4) = b3 + b4;

• PAR the mapping of a block of four bits to its parity

PAR(b1; b2; b3; b4) = b1 + b2 + b3 + b4:

Clearly, rather than operating on blocks of four bits, the above map-
pings may be equivalently defined for Boolean functions. For example,
consider the mappingTOP. LetAm be the space of Boolean functions
in m binary variables. Then,TOP: Am 7! Am�2 is the mapping that
takesf(v1; v2; . . . ; vm) to the Boolean function~f(v3; v4; . . . ; vm)
for whichfff( ~f) is the top row of (4).

Let w = vi vi � � � vi denote a monomial in them variables

v1; v2; . . . ; vm, wherek is at mostr, andI
def
= fvi ; vi ; . . . ; vi g.

Since the above mappings are obviously linear, it suffices to study
their effect on the Boolean monomialsw of degree at mostr. Such
monomials form a basis for the codeR(r; m), therefore, from now
on, we shall restrict our attention to Boolean vectors of the form

fff(w) = (w(0); w(1); w(2); . . . ; w(nnn); . . . ; w(2m � 1)):

A. Derivation of the General Definition

The mappingTOP takesw in v1; v2; v3; . . . ; vm to a monomial
in v3; v4; . . . ; vm whose corresponding vector is the top row in the
array representation (4) offff(w)

TOP(w) = wjv =0; v =0 =
w; if fv1; v2g 6� I

0: otherwise.

This, together with observation E above implies that all (and only) the
monomials inv3; v4; . . . ; vm of degree at mostr will be mapped to
themselves, and the next lemma immediately follows.

Lemma 1: The image ofRf (r; m) under the mappingTOP is
Rf (r; m � 2).

The mappingPPP 1 takes the monomialw in v1; v2; v3; . . . ; vm to a
monomial inv3; v4; . . . ; vm whose corresponding vector contains the
coefficients of1 in the GF(4) projection of the array representation of
fff(w). The coefficient of1 in

b1 � 0+ b2 � 1+ b3 � ���+ b4 � (1+ ���)

is b2 + b4, corresponding to the second and fourth rows of the array
representation. Therefore,

PPP 1(w) =wjv =1; v =0 + wjv =1; v =1

=

0 + w

v v
= w

v v
; if fv1; v2g � I

w

v
+ w

v
= 0; if v1 � I; v2 6� I

0 + w

v
= w

v
; if v1 6� I; v2 � I

w + w = 0; if fv1; v2g 6� I.

Clearly, this mapping yields all the monomials inv3; v4; . . . ; vm of
degree at mostr � 1.

Lemma 2: The image ofRf (r; m) under the mappingPPP 1 is
Rf (r � 1; m � 2).

Similarly, the mappingPPP��� takes the monomialw in v1; v2;

v3; . . . ; vm to a monomial inv3; v4; . . . ; vm whose corresponding
vector contains the coefficients of��� in the GF(4) projection of the
array representation offff(w). The coefficient of��� in

b1 � 0+ b2 � 1+ b3 � ���+ b4 � (1+ ���)

is b3 + b4. Therefore,

PPP�(w) =wjv =0; v =1 + wjv =1; v =1

=

w

v v
; if fv1; v2g � I

w

v
; if v1 � I; v2 6� I

0; otherwise.

Once again, this mapping yields all the monomials inv3; v4; . . . ; vm
of degree at mostr � 1.

Lemma 3: The image ofRf (r; m) under the mappingPPP� is
Rf (r � 1; m � 2).

The mappingPAR takesw in v1; v2; v3; . . . ; vm to a monomial
in v3; v4; . . . ; vm whose corresponding vector is the parity image of
the array representation (4) offff(w). (The parity image of the array is a
vector of length2m�2 whose elements are either0 or 1 in accordance
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TABLE I
DEFINITION OFR(r; m) CODES

with the parity of the corresponding column.) Thus,PAR(w) = b1+
b2+b3+b4, corresponding to the sum of the four elements of a column

PAR(w) =wjv =0; v =0 + wjv =1; v =0

+ wjv =0; v =1 + wjv =1; v =1

=
w

v v
; if fv1; v2g � I

0; otherwise.

This mapping yields all the monomials inv3; v4; . . . ; vm of degree at
mostr � 2.

Lemma 4: The image ofRf (r; m) under the mappingPAR is
Rf (r � 2; m � 2).

Sincew =
i2I(w) vi is a monomial inv1; v2; . . . ; vm, where

I(w) is a nonempty subset off1; 2; . . . ; mg, and by definingJ as
the intersection ofI(w) with f1; 2g, the action of the above mappings
onw can be summarized as

J = f1; 2g J = f1g J = f2g J = f g

TOP(w) 0 0 0 w

PPP 1(w) w

(v v )
0 w

v
0

PPP���(w) w

(v v )
w

v
0 0

PAR(w) w

(v v )
0 0 0

From this, and as a corollary of Lemmas 1 through 4, we see that the
mapping

ID = TOP+ v2PPP 1 + v1PPP��� + (v1 + v2 + v1v2)PAR (5)

is the identity mapping. This means that the images under the four pro-
jection mappings uniquely determine the preimage. LetGR(r;m) de-
note the generator matrix for the codeR(r; m), and let the combined
image of the mappingsPPP 1 andPPP��� be defined as

f1 � bbb �GR(r�1;m�2) + ��� � aaa �GR(r�1;m�2) : aaa; bbb 2 GF(2)kg (6)

with the operations suitably interpreted over GF(4), and wherek is
the dimension ofR(r � 1; m � 2). It follows from Lemmas 2 and
3 and the definition ofPPP 1 andPPP���, that the combined image of the
mappingsPPP 1 andPPP��� (6) is identical to the projection of the columns of
(4) onto GF(4)as defined in Section II. The next corollary immediately
follows.

Corollary 1: The projection of the codeR(r; m), i.e., the set
of quaternary vectors obtained by projecting all the codewords of

R(r; m) on GF(4)2 , is a quarternary linear code whose generator
matrix isGR(r�1;m�2).

This quaternary code will, therefore, be denoted byR4(r� 1; m�
2).

Theorem 1: TheR(r; m) code,r > 1 andm > r + 1, is the set
of all the 4 � 2m�2 binary arrays, such that each array satisfies the
following conditions.

a) The parity-image of the array is a codeword of theR(r�2;m�2)
code.

b) The projection of the array is a codeword of theR4(r�1; m�2)
code.

c) The top row is a codeword of theR(r; m� 2) code.
Proof: The proof follows from (5), Lemmas 1 and 4, and Corol-

lary 1.

Theorem 1 does not apply to first-order Reed–Muller codes. How-
ever, the following construction is an immediate corollary to the prop-
erties of the four projection mappings.

Corollary 2: TheR(1; m) code,m > 2, is the set of all the4 �
2m�2 binary arrays, such that each array satisfies the following condi-
tions.

a) It consists of only even columns.

b) The projection of the array is a codeword of aR4(0; m � 2)
code.

c) The top row is a codeword of theR(1; m� 2) code.
Proof: The proof follows from (5), Lemma 1, and Corollary 1,

and the fact that first-order Reed–Muller codes include only monomials
of maximum degree one, thus,PAR(w) = 0 for any monomialw.

Similarly, for R(m � 1; m), Proposition 3 follows from the fact
that this code contains all the monomials of degree less thanr. Thus,
the mappingTOP generates all the monomials inv3; v4; . . . ; vm of
degree at mostr � 2, which from the array representation (4) clearly
amounts to the Universe code[2m�2; 2m�2; 1] = R(m�2; m�2).
The obtained results are summarized in Table I.

Remark: It is well known that all Reed–Muller codes of length
greater than four can be obtained by applying the(uju + v) con-
struction recursively from the codesR(0; 2), R(1; 2), andR(2; 2).
Though we originally derived Theorem 1 by employing this recursive
construction, the current approach was finally adopted, as it is more
elegant. In the Appendix, we show how Corollary 1 can be derived
from the(uju + v) construction.

B. Multilevel Construction of the Reed–Muller Codes

While the four projection mappings do not result in a multilevel con-
struction, combining the images ofPPP 1 andPPP��� yields the definition of
Reed–Muller codes given by Theorem 1, which indeed results in the
(true) multilevel construction illustrated in Fig. 1.
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Fig. 1. Multilevel construction of Reed–Muller codesR(r; m), 1 < r <

m � 1.

This construction is based on the partition chain of the four-di-
mensional binary codes[4; 4]=[4; 3]=[4; 1]=[4; 0] with Hamming
distances1=2=4=1. It is now shown that this construction is equiv-
alent to that of Theorem 1. The two-way partition[4; 4]=[4; 3] at the
first level distinguishes between the odd and even columns. According
to condition 1 part a), the parity image of the array, i.e., the positions of
the odd and even columns, is a codeword ofR(r� 2; m� 2). Hence,
theR(r� 2; m� 2) is applied to the partition[4; 4]=[4; 3] at the first
level. The four-way partition[4; 3]=[4; 1] distinguishes between the
binary images of the four symbols0; 1; ���; ��� over GF(4). According
to condition 1 part b), the projection of the array is a codeword of the
quaternary codeR4(r � 1; m� 2). Hence, theR4(r � 1; m� 2) is
applied to the partition[4; 3]=[4; 1] at the second level. At the third
level, the two-way partition[4; 1]=[4; 0] determines whether the top
row entry in a column is0 or 1, or equivalently, it chooses between
two complementary binary four-tuples. According to condition 1 part
c), the parity of the top row of the array is a codeword ofR(r; m�2).
Hence, the codeR(r; m � 2) is applied to the partition[4; 1]=[4; 0]
at the third level.

Another representation for this construction is by means of the code
formula notation. Consider the following set of coset representatives
for the partition[4; 4]=[4; 3]=[4; 1]=[4; 0]:

G[4; 4]=[4;3] = [ 0 1 1 1 ]

G[4; 3]=[4;1] =
0 1 0 1

0 0 1 1

G[4; 1]=[4;0] = [ 1 1 1 1 ] :

Based on the foregoing arguments, it is apparent that theR(r; m) code
consists of all the vectors of the form

ccc1 
G[4; 4]=[4;3] + ccc2 
G[4; 3]=[4;1] + ccc3 
G[4; 1]=[4;0]

where
 stands for the Kronecker product,ccc1 2 R(r � 2; m � 2),
ccc2 2 R4(r� 1; m� 2), andccc3 2 R(r; m� 2) (with the convention
that the quaternary elements of the vectorccc2 are mapped to binary pairs
as follows:0 7! 00, 1 7! 01, � 7! 10 and� 7! 11).

IV. FURTHER CONSIDERATIONS ANDCONCLUSION

A multilevel construction for binary Reed–Muller codesR(r; m)
has been presented based upon the projection of the codewords of
R(r; m) onto a linear quaternary code with the same parameters and
generator matrix as the binary Reed–Muller codeR(r � 1; m � 2).
The other two codes applied to the first and third levels of the
construction are the binary Reed–Muller codes,R(r � 2; m � 2)
andR(r; m � 2), respectively. As argued before, this construction

Fig. 2. Multilevel construction of[32; 16; 8]R(2; 5).

is readily applicable for efficient maximum-likelihood or multistage
bounded distance decoding. This will be demonstrated by means of
some examples.

First-orderR(1; m) codes may be decoded in a straightforward
manner based on the construction of Corollary 2. A brief description
of the decoding steps follows. (Precomputation) Let us assume an
additive white Gaussian noise (AWGN) channel model, and let a
sequence ofn symbols be observed at the channel output. Arrange the
received sequence in a two-dimensional4� n

4
arrayS corresponding

to (4). For each� 2 GF(4) and for each of the columnsSi of S
compute the metric of theeven representationof � [17]. i) For each of
the four codewords ofR4(0; m� 2), the repetition code over GF(4),
find the binary array whose top row is the codeword ofR(1; m � 2)
with the minimum overall metric. ii) Among the four arrays thus
obtained, select the one with the minimum metric as the output of
the decoder. The decoding complexityNR(1;m) associated with this
algorithm can now be easily evaluated recursively

NR(1;m) = 10 � 2m�2 + 4 � NR(1;m�2) + 3

where 10 is the number of real-number operations required for
computing the metric of each and every� 2 GF(4) per coordinate
(employing the Gray mapping principle); and4 � NR(1; m�2) is
obviously the complexity of decoding step 1. (Note that this may be
regarded as an upper bound on the true decoding complexity associ-
ated with our construction because we have employed a “brute-force”
approach for the complexity evaluation.) For example, decoding the
R(1; 3) = [8; 4; 4] code requires 20 real-number operations for
computing the different metrics in thePrecomputationstep, and4 + 3
additional operations for computing the overall metrics of the four
arrays (Step i)) and for selecting the best one (Step ii)). Therefore,
in a straightforward manner, using the above recursive evaluation,
we getNR(1; 3) = 27, NR(1; 5) = 191, NR(1; 7) = 1087. This is
comparable to 23, 223, and 1151 operations, respectively, associated
with the trellis-based decoder of Forney [7]. A more interesting
example is the second-orderR(2; 5) = [32; 16; 8]. Along the lines
of [17], maximum-likelihood decoding of theR(2; 5) code requires�
2000 binary real-number operations as compared to�3580 operations
required for trellis decoding [7]. Along the lines of [1], [3] bounded
distance soft decoding ofR(2; 5) may be performed with as few as
�320 operations.

While focusing primarily on Reed–Muller codes, we note that sim-
ilar constructions may be obtained for other interesting codes. For ex-
ample, Conway and Pless [4] enumerated five nonequivalent binary
codes with parameters[32; 16; 8]. At least two of these codes, i.e., the
R(2; 5) and the extended quadratic residue (QR) codes, can be de-
fined over GF(4) in very much the same way.R(2; 5) has a true mul-
tilevel construction as depicted in Fig. 2, withC1 being the[8; 4; 4]
quaternary codeR4(1; 3). The QR code is obtained by replacingC1
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Fig. 3. Multilevel construction of[32; 16; 8] quadratic residue (QR) code.

with another[8; 4; 4] quaternary code [18], and by introducing some
dependency between the first and last levels. The line connecting the
levels in Fig. 3 depicts this fact. The code employed at the last level is
either the[8; 7; 2] even-weight code or a coset of the latter (containing
only odd-weight codewords), and is determined by the codeword in the
first level. It is plausible that the other three nonequivalent[32; 16; 8]
codes may be constructed in a similar manner.

APPENDIX

Corollary 1 is now derived by invoking the(uju+ v) construction.
This derivation requires the following lemmas. Let' denote the projec-
tion mapping taking a binary linear code of length4n to a quaternary
code of lengthn as defined in the correspondence.

Lemma 5: The images of the(4; 4; 1), (4; 1; 4), and(4; 3; 2) bi-
nary codes are GF(4)-linear.

Proof: By Proposition 1, Proposition 2 part b) and Proposition 3
part b), respectively.

Lemma 6: If U andV are binary linear codes whose images are
GF(4)-linear, then the code'(U + V ) is GF(4)-linear.

Proof: U+V is a vector space, and the mapping' is a homomor-
phism with respect to addition, so'(U + V ) forms a subgroup of the
additive group in GF(4)n. It remains to show that'(U +V ) is closed
under scalar multiplication. Clearly,0 � x 2 '(U + V ). It suffices to
show that for allx 2 '(U + V ), �x is also in'(U + V ), since then,
by addition,x + �x = �x 2 '(U + V ). But if x 2 '(U + V ), then
x = '(u+ v) for someu 2 U; v 2 V . By the homomorphism prop-
erty,'(u+v) = '(u)+'(v). Since'(U) is GF(4)-linear, there exists
u0 2 U such that'(u0) = �'(u). Likewise, there existsv0 2 V such
that'(v0) = �'(v). It follows that'(u0+v0)=�'(u)+�'(v)=�x

is an element of'(U + V ).

Lemma 7: If U is a binary linear code whose image is GF(4)-linear,
then the code(U jU ) = f(u; u):u 2 Ug is GF(4)-linear. Likewise,
the code(0jV ) = f(0; v):v 2 V g is GF(4)-linear.

Lemma 7 is easy to prove by construction. Combining Lemmas 6
and 7 we see that ifU andV are codes whose images are GF(4)-linear,
then (U jU + V ) is a code whose image is GF(4)-linear. Since all
Reed–Muller codes of length larger than four can be obtained by
applying the(U jU + V ) construction recursively from the codes of
Lemma 5, it follows that the images of all Reed–Muller codes (with bit
ordering obtained from the recursive construction) are GF(4)-linear.

Now letG('(U)) be a generator matrix for'(U) andG('(V )) be
a generator matrix for'(V ), then

G('(U)) G('(U))

0 G('(V ))

is clearly a generator matrix for'(U jU + V ), with G('(U)) = 0
whenU = (4; 0; �) or U = (4; 1; 4), andG('(U)) = 1 when

U = (4; 3; 2) or U = (4; 4; 1). From the recursive(uju + v) con-
struction ofR(r; m) it follows that the generator matrix for the quater-
nary image is the same asR(r�1; m�2) and Corollary 1 is obtained.
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