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Binary Reed—Muller codes are among the most prominent families

of codes in coding theory. They have been extensively studied and
employed for practical applications. In this work, a general three-level
construction of Reed-Muller codes is presented, based upon the
projection of the binary codewords onto codes over(&F Interest-
ingly, for a binary Reed—Muller codB (r, m ), the parameters of the
projected code over GR) are similar to those of the Reed—Muller
R(r—1, m —2) code; furthermore, the codes applied to the other two
levels of the construction are the Reed—Muller coR¢s — 2, m — 2)
andR(r, m — 2). Note that the parameters of the three constituent
codes are the same as in Forney’s two-level squaring construction of
R(r, m) [7] except that all the constituent codes in [7] are binary.

As in the case of the Golay codes, the proposed construction and,
in particular, the projection onto linear codes over (@F; should en-
able efficient maximume-likelihood and multistage soft decoding of the
Reed—Muller codes. Some examples and complexity considerations are
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discussed. This should also maRér, m) codes attractive candidates Proposition 2: The R(0, m) code,m > 2, is the set of all the
for Block turbo-code schemes, i.e., product codes with iterative dé-x 2™~ binary arrays, such that each array satisfies the following
coding [14]. Moreover, since the family of Barnes—Wall lattices areonditions.
closely related to Reed—Muller codes [5], [6], the same construction
can be employed for generating these lattices and for their efficient soff* i
decoding. Nonlinear relatives of the Reed—Muller codes may also benb) The projection of the array is the all-zero vector ovet @F .
efit from this construction which would make them easier to decodec) The top row is a codeword of the binaR(0, m — 2) code.
[15], [2]. . . iy

Finally, it is noteworthy that 1) Reed-Muller codes are usually ndt IS €asy to verify that Proposition 2 generates the all-zero and the
Zy-linear [9], [10], though they may be regarded as “@Flinear” all-one vectors_ of _Iengtﬁ’” by recalling that the even binary image
for any r andm; 2) when they are indeed,-linear, the number of of 0 € GF(4) is either0000 or 1111, and also that the two possible
7. codewords is the same as the number of binary codewords in fifgleéwords ofR(0, m — 2) are the all-zero and the all-one vectors.
Reed-Muller code due to the one-to-one mapping, while the numt}—é?’e above propositions are easily generalized to all codes with length

of codewords over GF.) is considerably smaller due to the projectiorfliviSible by 4. , o _
operation. R(m—1, m)isa[2™, 2™ —1, 2] code consisting of all even-weight

In the next section, the projection of binary sequences ontoiGF vectors. This family of single parity-check codes can be constructed as

is briefly described and some simple Reed—Muller codes are definedgHows-

order to demonstrate the main ideas behind the proposed constructioproposition 3: The R(m — 1, m) code,m > 2, is the set of all

A more formal mathematical definition of this construction, based GRe4 x 22 binary arrays, such that each array satisfies the following
the definition of Reed—Muller codes in terms of Boolean functions, igynditions:

given in Section Ill for all Reed—Muller codé8(r. m). Several dif- ) the number of odd columns is even;

ferent representations of the obtained construction are also describe . . e em—2

Finally, decoding complexity issues and further considerations are dis-%) S]ri\f)er:’sjicég);eog\t/he? aGrar%a)y is a codeword of [, 2 1]

cussed in Section IV. Proof: Follows immediately from the fact the this definition gen-

erates all possible binary words of even weight, due to conditions b) and
Il. PRELIMINARIES AND SIMPLE CONSTRUCTIONS a) respectively. 0

) It consists of only even columns.

Hereafter, the elements of GE) = {0, 1, a, 8} will be referred
to assymbolsA binary four-tupleb = (b1, b2, b3, ba)" with the scalar
product

An alternative approach to the proof is discussed in Section IIl.
Note that the following may be regarded as an (additional) condi-
tion c) for Proposition 3: the top row is a codeword of the binary
R(m — 2, m — 2) code. Since th& (m — 2, m — 2) is the Universe
code[2™~2, 2"~2, 1], this condition is redundant and was hence
omitted.
will be called abinary imageof .. Converselyy: will be called the b sition 3 is easily extended for constructing all single parity-
projectionof the binary four-tu_pleb. Clearly, each GF4) symbol has . check codes of lengthi, i being a positive integer. Each of these codes
MO complementary even-weight and two complementary Odd'we'qgtdefined asthe set of all tHe<i binary arrays, such that each array sat-
Images. ) L isfies the following conditions: a) the number of odd columns is even;

Letd = (b1, b2, ... bx) be abinary vector of length divisible by b) the projection of the array is a codeword of figi, 1] Universe

4, and arrange its elements in a four rowsipgolumns4 x ., array code over GF4). The above proof also holds true for these codes.

b1 b5 bn—s . R(r, m): DEFINITION AND MULTILEVEL CONSTRUCTION

p— |02 o bn—2 ) It is well known that Reed—Muller codes can be defined very simply
by br bn—s in terms of Boolean polynomials. Let, vo, ..., v,,, bem binary
ba  bs bn variables and lef denote a Boolean polynomial in thegevariables.

f(f)isavectoroflengt®™ corresponding tg which, in the standard

The projection of this array onto GB) is obtained by taking the bit ordering [11], is given by
% projections of the columns. A column will be said to be of type

even or simply even, if its Hamming weight is even. Otherwise, the F(F) = (f(0), f(1), f(2), ..., f(2™ —1)). (3)
column will be said to bedd The sum of two columns is defined as
the component-wise moduladdition of the column’s elements. Forn=0,1,...,2"—1,(ny, na, ..., ny) is the binary expansion

Finally, recall that for any two integers and m satisfying of lengthm of n satisfying
0 < r < m, there is a binaryth-order Reed—Muller codB (r, m)

with the following [n, &, d] parameters: length = 2™; dimension m—1 _
k=37_, ("); and minimum distancé = 2™ ~". Next, we construct n= nip2'
some simple binary Reed—Muller codes based on the notation above. i=0

R(m, m) contains all the vectors of length= 2", i.e., it is the

[2, 2™ 1] Universe code. Its definition is straightforward. andf(n) is the value of the polynomiaf evaluated at

Proposition 1: The R(m, m) code,m > 2, is the set of all
the4 x 2”72 binary arrays whose projection is a codeword of the
[2™~2, 2™~2 1] Universe code over GH).

The zero-order Reed—Muller code(0), m) is the repetition code  Definition [12]: Therth-order binary Reed—Muller cod@(r, )
with parameter§2™, 1, 2™]. of lengthn = 2™, for 0 < r < m is the set of all vectorg(f),

(U1, U2y ovvy Upy) = (N1, N2y oy M)
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wheref is a Boolean polynomial im: variables of degree at most A. Derivation of the General Definition
In other words, ifR s (r, m) denotes the set of Boolean polynomial in The mappingTOP takesw

: inv1, va, vs, ..., v, t0 a monomial
m variables of degree at mostthen

in vs, v4, ..., v, Whose corresponding vector is the top row in the
array representation (4) ¢f(w)

R(r,m) := {f(f): f € Ry(r, m)}.

/s if {vi,v2} T
TOP (w) = w]o;—0. voo = 4 7 I L
(1) lr1=0. 120 {(). otherwise.

The proposed construction is based on dividing the bit positions into

groups of four as in (2), thus, (3) becomes This, together with observation E above implies that all (and only) the

monomials invs, v4, ..., v, of degree at most will be mapped to
f(0) f(4) flak) - f(2™ - 4) themselves, and the next lemma immediately follows.
fa) f(&) - f(4k+1) --- f(2™-3) 4 , . )
£(2) £(6) fak+2) - fl2m—2)|" 4) Lemma 1 The image ofR ;(r, m) under the mappin@ OP is
F3) f(T) - f4R+3) o f2m-1) Rglr,m = 2).
The mappingP; takes the monomial in vy, v2, w3, ..., v, tO A
This grouping amounts to fixing a certain value for the variable®onomialinvs, v4, ..., v, whose corresponding vector contains the
V3, V4, ..., Um, and allowing the remaining coordinates and coefficients ofl in the GF(4) projection of the array representation of

vy to take all the possible values. Thus, we immediately obserféw). The coefficient ofl in

that: A) the variables in the first row of (4) are all multiples 4f

hencev; = v, = 0 for all of these variables; B) in the second row

vy = 1, vo = 0; C) in the third rowv; = 0, v2 = 1; D) in the fourth

rowv; = vz = 1; E) in each of the four rows, the binary variables )

Vs, V4, ..., U take all the possible values. is by + ba, qorrespondlng to the second and fourth rows of the array
As described in Section II, each column in (4) can be projected &fPresentation. Therefore,

GF(4), namely, obtain an element in G¥) that may be represented by

its coefficients with respect to the basik, a}. Based on the proposed Py(w0) =woy=1, vo=0 + W0|o=1, vy=1

grouping and the representation over @F(1), we shall now describe

four different projection mappings. 0"‘ ufg;z :Ovlwvzv II {v1. LIZ} cI .
« TOP the mapping of a block of four bits to its first element S ST Mor C L, v ¢
0+ - =1 ifvi ¢ ZT,va CT
w+w =0, if {vi,v2} ¢ Z.
TOP(ZJL. bz, bg, b4) = bl;
Clearly, this mapping yields all the monomials:ig, v, ..., v, of
e Py the coefficient ofl in the GF(4)-domain degree at most — 1.

Lemma 2: The image ofR¢(r, m) under the mappingP; is
Py (b, ba, b3, ba) = bo + ba; Re(r —1, m—2).

Similarly, the mappingP,. takes the monomiaks in v, va,

* P, the coefficient of in the GF(4)-domain Vs, ..., Um to @ monomial invs, vs, ..., v, whose corresponding
vector contains the coefficients of in the GF4) projection of the
Po(by, by, bs. by) = by + bu; array representation ¢f(w). The coefficient ofx in
« PAR the mapping of a block of four bits to its parity b1-0+by-1+bs-a+bs-(1+a)
PAR(by, by, bs, bs) = by + by + bs + by. is bz + b4. Therefore,
Clearly, rather than operating on blocks of four bits, the above map- Po(w) =wloy=0, vo=1 + wloy=1, 0,21
pings may be equivalently defined for Boolean functions. For example, w_ if {v1, v2} CT
F:onsidprthe mjdppir@‘OP. LetA,, bethe space prooIean functions — :ﬁuz ifoiCT, g T
inm binary variables. TherTOP: A4,,, — A,n__g is the mapping that 0} otherwise.
takesf(v1, vz, ..., vm) to the Boolean functiotf (vs, va, ..., vm)
for which f(f) is the top row of (4). . . Once again, this mapping yields all the monomialsinuv, ..., vy,
Let w = wv;,v4, -+ v;, denote a monomial in the: variables
! dof of degree at most — 1.
U1, V2, ..., Uy, Wherek is at mostr, andZ = {vi,, viy, ..., Vi }.

Since the above mappings are obviously linear, it suffices to studyLemma 3: The image ofR;(r, m) under the mappingP. is
their effect on the Boolean monomials of degree at most. Such R;(r — 1, m — 2).
monomials form a basis for the cod&(r, m), therefore, from now

. . The mappindPAR. takesw in vy, ve, v3, ..., v,, 10 @a monomial
on, we shall restrict our attention to Boolean vectors of the form ppind® o ’

invs, va, ..., v,, Whose corresponding vector is the parity image of
the array representation (4) pfw). (The parity image of the array is a
fw) = (w(0), w(l), w(2), ..., wn), ..., w(2™ —1)). vector of lengt2™ ~* whose elements are eith@or 1 in accordance
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TABLE
DEFINITION OF R(r, m) CODES
" Code | Code Parameters | parity image | Projection | Top row parity ||
R(0,m) [2™, 1, 2™] 0™2 € GF(2) | 0™2 € GF(4) R(0,m—2)
R(1,m) [2™, 14+m, 2™ 0™2 € GF(2) | R4(0,m—2) R(L,m-2)
R(r,m) 2™, Yi0(T), 2™7"] | R(r—=2,m—2) | Ry(r-1,m-2) R(r,m—2)
R(m—1,m) [2™, 2™m-1, 2] R(m-3,m—2) | Rg(m—2,m-2) | R(m-2,m-2)
R(m,m) [2™, 2™, 1] R(m—2,m-2) | R4(m—2,m~2) | R(m—2,m—2)
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with the parity of the corresponding column.) ThBAR(w) = b1 + R(r, m)on GF(4)2m72, is a quarternary linear code whose generator
ba+Db3 +ba, corresponding to the sum of the four elements of a colummatrix isGr (,—1, m—2)-

This quaternary code will, therefore, be denoteddbyr — 1, m —
PAR(w) = w]o,=0,v5=0 + W|u, =1, va=0 2) a Y Y

+ Wy =0, vo=1 F W =1, va=1

— { 1,'1”1;!2 ? If {UI’ 'UZ} C T
0,

otherwise.
This mapping yields all the monomialsis, v, ...

Theorem 1: The R(r, m) code,r > 1 andm > r + 1, is the set
of all the4 x 2™~2 binary arrays, such that each array satisfies the
following conditions.

a) The parity-image of the array is a codeword of R\g—2, m—2)

, v, Of degree at

code.
mostr — 2. o .
b) The projection of the array is a codeword of Rg(r — 1, m—2)
Lemma 4: The image ofR¢(r, m) under the mappin®AR is code.

Ry(r —2,m—2). c) The top row is a codeword of tHe(r, m — 2) code.

Proof: The proof follows from (5), Lemmas 1 and 4, and Corol-

Sincew = [[;¢;(,) vi iIs @ monomial inuy, vz, ..., vm, Where
lary 1. O

I(w) is a nonempty subset dfl, 2, ..., m}, and by defining/ as
the intersection of (w) with {1, 2}, the action of the above mappings

! Theorem 1 does not apply to first-order Reed—Muller codes. How-
onw can be summarized as

ever, the following construction is an immediate corollary to the prop-
erties of the four projection mappings.

Corollary 2: TheR(1, m) code,m > 2, is the set of all thel x
2™~2 pinary arrays, such that each array satisfies the following condi-
tions.

J={12y J={1} J={2} J={}

TI?P(“") S 0 9 w a) It consists of only even columns.
vw) (v1vz) 0 vz 0 b) The projection of the array is a codeword oRa(0, m — 2)
P (w) o - 0 0 code.
(viva) vy
PAR(w) —w 0 0 0 c) The top row is a codeword of the(1, m — 2) code.

(vive)

Proof: The proof follows from (5), Lemma 1, and Corollary 1,
and the fact that first-order Reed—Muller codes include only monomials

From this, and as a corollary of Lemmas 1 through 4, we see that t%fema)qmum degree one, thuBAR(w) = 0 for any monomialy.[J

mapping Similarly, for R(m — 1, m), Proposition 3 follows from the fact
that this code contains all the monomials of degree lessith@hus,
the mappindT OP generates all the monomialsin, vs4, ..., v, Of
degree at most — 2, which from the array representation (4) clearly
is the identity mapping. This means that the images under the four pf§oounts to the Universe cofi" =2, 2™~%, 1] = R(m — 2, m —2).
jection mappings uniquely determine the preimage.&gt,. ) de- The obtained results are summarized in Table I.

note the generator matrix for the cofé¢r, m ), and let the combined
image of the mappingP; and P, be defined as

ID = TOP + va P71 4+ v Po + (vi + v2 + viv2) PAR (5)

Remark: It is well known that all Reed—Muller codes of length
greater than four can be obtained by applying thé: + v) con-
struction recursively from the codé&(0, 2), R(1, 2), andR(2, 2).
Though we originally derived Theorem 1 by employing this recursive
construction, the current approach was finally adopted, as it is more
with the operations suitably interpreted over @f, and wherek is  elegant. In the Appendix, we show how Corollary 1 can be derived
the dimension ofR(r — 1, m — 2). It follows from Lemmas 2 and from the(u|u + v) construction.

3 and the definition ofP, and P, that the combined image of the

mappingsP: andP. (6) is identical to the projection of the columns ofg, Multilevel Construction of the Reed—Muller Codes

(4) onto G 4) as defined in Section Il. The next corollary immediately
follows.

{1 -b- GR(rfl,m72) +a-a- GR(T*I,'I’YL*Q): a, b S GF(Q)A} (6)

While the four projection mappings do not result in a multilevel con-
struction, combining the images 8% andP,, yields the definition of
Corollary 1: The projection of the cod&(r, m), i.e., the set Reed—Muller codes given by Theorem 1, which indeed results in the
of quaternary vectors obtained by projecting all the codewords (fue) multilevel construction illustrated in Fig. 1.
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GF(2) GF(2)

R(r—2,m—2) [4,4,1)/[4,3,2] R(0,3) [4,4,1]/[4,3,2]
GF() 1 GF(4) :

Ra(r—1,m—2) [4,3,2)/[4,1,4] Q=641 [4,3,2/14, 1.4
i ;

GF(2) R(2,3) CF ) [4,1,4)/[4,0, 0]

R(r,m-2) [4,1,4}/[4,0,00] ’ - -

!

1

Fig. 1. Multilevel construction of Reed-Muller cod®&(r, m), 1 < r <
m — 1.

Fig. 2. Multilevel construction of32, 16, 8]R(2, 5).

is readily applicable for efficient maximume-likelihood or multistage

This construction is based on the partition chain of the four_db_ounded distance decoding. This will be demonstrated by means of

: : ) . Lome examples.
?etn5|ongl ;)lriary clct>c_ie$4, 4]/#’ 3]/t[§" tllr/f[ﬁh 0] V\t”th t_Hammlng. : First-orderR (1, m) codes may be decoded in a straightforward
:S atntceth /t /fq_oho' 'S nlowTE (i\\xn a |st.ct:.ons4ruc4|o§ 'St?ﬁu'v manner based on the construction of Corollary 2. A brief description
alent to that ot Theorem ~. The two-way part iph 4]/[4, 3] at the of the decoding steps followsPfecomputatioh Let us assume an
first level distinguishes between the odd and even columns. Accordin

N dition 1 parta). th ity i fth e th it additive white Gaussian noise (AWGN) channel model, and let a
0 condition 1 parta), the parityimage ot the arrgy, 8., . € positions g guence of symbols be observed at the channel output. Arrange the
the odd and even columns, is a codewor@®agf — 2, m — 2). Hence,

theR(r — 2, m — 2) is applied to the partitiofi, 4]/[4, 3] at the first received sequence in a two-dimensiofdal 7 arrayS corresponding

o L to (4). For eachy € GF(4) and for each of the columnS; of S

level. The four-way partitiori4, 3]/[4, 1] distinguishes between the h ic of 3 .
. . . hev 17.1) F h of
binary images of the four symbals 1, «, 8 over GF(4). According compute the metric of theven representatioof . [17]. i) For each o

" S . the four codewords oR4(0, m — 2), the repetition code over GB),
to condition 1 part b), the projection of the array is a codeword of tr}%d the binary array whose top row is the codewordfl, m — 2)
quaternary cod®.4(r — 1, m — 2). Hence, théR4(r — 1, m — 2) is ith th o I ic. i) A he f ’ h
applied to the partitiorjd, 3]/[4, 1] at the second level. At the third with the minimum overall metric. i) Among the four arrays thus

level. the tWo-w. rtitiorid. 11/[4. 0] determines whether the t obtained, select the one with the minimum metric as the output of
evel, the . 0-way pa . ori4, 1]/14, ]. ete _es ether the Opthe decoder. The decoding complexi¥k ...y associated with this
row entry in a column i) or 1, or equivalently, it chooses between X

. . . algorithm can now be easily evaluated recursivel
two complementary binary four-tuples. According to condition 1 partg y y

c), the parity of the top row of the array is a codeworddfr, m — 2). .
Hence, the cod®(r, m — 2) is applied to the partitiofd, 1]/[4, 0] Nr(,m) =10-2"7"+4- Nr(1,m-2) +3
at the third level.
Another representation for this construction is by means of the cogl@ere 10 is the number of real-number operations required for
formula notation. Consider the following set of coset representativesmputing the metric of each and everyc GF(4) per coordinate

for the partition[4, 4]/[4., 3]/[4, 1]/[4. 0]: (employing the Gray mapping principle); antd- Nyg(i o) iS
obviously the complexity of decoding step 1. (Note that this may be
G, 4,3 =10 1 1 1] regarded as an upper bound on the true decoding complexity associ-
ated with our construction because we have employed a “brute-force”
0101 : . i
Gla, 3)/(4.1] = { } approach for the complexity evaluation.) For example, decoding the
001l R(1,3) = [8, 4, 4] code requires 20 real-number operations for
Gu, o =[1 1 1 1]. computing the different metrics in tirecomputatiorstep, andt + 3

additional operations for computing the overall metrics of the four

Based on the foregoing arguments, it is apparent thathe m) code  arrays (Step i)) and for selecting the best one (Step ii)). Therefore,
consists of all the vectors of the form in a straightforward manner, using the above recursive evaluation,
we get;’\’rn(173) = 27, -N’R(LS) = 191, 17\7'/2(117) = 1087. This is
comparable to 23, 223, and 1151 operations, respectively, associated
with the trellis-based decoder of Forney [7]. A more interesting
example is the second-ord&(2, 5) = [32, 16, 8]. Along the lines
of [17], maximum-likelihood decoding of tH& (2, 5) code requires-
2000 binary real-number operations as compared3630 operations
required for trellis decoding [7]. Along the lines of [1], [3] bounded
distance soft decoding 0¥ (2, 5) may be performed with as few as
~320 operations.

While focusing primarily on Reed—Muller codes, we note that sim-

A multilevel construction for binary Reed—Muller cod&Sr, m) ilar constructions may be obtained for other interesting codes. For ex-
has been presented based upon the projection of the codewordsrople, Conway and Pless [4] enumerated five nonequivalent binary
R(r, m) onto a linear quaternary code with the same parameters aratles with paramete[32, 16, 8]. At least two of these codes, i.e., the
generator matrix as the binary Reed—Muller c@dler — 1, m — 2).  R(2, 5) and the extended quadratic residue (QR) codes, can be de-
The other two codes applied to the first and third levels of thiined over GRH4) in very much the same waR (2, 5) has a true mul-
construction are the binary Reed—Muller cod&sy — 2, m — 2) tilevel construction as depicted in Fig. 2, with being the[8, 4, 4]
andR(r, m — 2), respectively. As argued before, this constructiogquaternary cod&. (1, 3). The QR code is obtained by replaciag

€1 @ Gy, 41/[4,3) + €2 @ Gl 3)/[4,1] + €3 @ G4, 1]/[4,0]

where® stands for the Kronecker produet, € R(r — 2, m — 2),
¢z € Ra(r — 1, m —2),andes € R(r, m — 2) (with the convention
that the quaternary elements of the veetpare mapped to binary pairs
as follows:0 — 00,1 — 01, o — 10 andj — 11).

IV. FURTHER CONSIDERATIONS AND CONCLUSION
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GF(2) U=1(4,3,2)orU = (4, 4, 1). From the recursivéu|u + v) con-
] R(0,3) 4,4,1}/14,3,2] struction of R (r, m) it follows that the generator matrix for the quater-
l nary image is the same &r — 1, m —2) and Corollary 1 is obtained.
GF(4)
Cy = [8,4,4] [4,3,2)/[4,1,4] ACKNOWLEDGMENT
1 The authors wish to thank S. Litsyn, O. Keren, and Y. Shany for stim-
GF(2) ulating discussions. The referees are gratefully acknowledged for their
— R(2,3) [4,1,4]/[4,0, 0] helpful comments. In particular, the authors are in debt to J. Lahtonen
for his insightful comments that greatly improved the presentation of
1 the results.

Fig. 3. Multilevel construction of32, 16, 8] quadratic residue (QR) code.

with another8, 4, 4] quaternary code [18], and by introducing some 1
dependency between the first and last levels. The line connecting the
levels in Fig. 3 depicts this fact. The code employed at the last level is[2]
either thg8, 7, 2] even-weight code or a coset of the latter (containing
only odd-weight codewords), and is determined by the codeword in thel®
first level. It is plausible that the other three nonequiva[8Bt 16, 8]

codes may be constructed in a similar manner. [4]
APPENDIX (]
Corollary 1 is now derived by invoking the:|u + v) construction.  [6]
This derivation requires the following lemmas. Letlenote the projec-
tion mapping taking a binary linear code of lendth to a quaternary 7]
code of length: as defined in the correspondence.
(8]

Lemma 5: The images of thé4, 4, 1), (4, 1, 4), and(4, 3, 2) bi-
nary codes are G )-linear.
Proof: By Proposition 1, Proposition 2 part b) and Proposition 3
part b), respectively. O (]

Lemma 6: If U andV are binary linear codes whose images are
GF(4)-linear, then the code (U + V') is GF(4)-linear.

Proof: U4V isavector space, and the mappint a homomor-
phism with respect to addition, sgU + V') forms a subgroup of the
additive group in GF4)™. It remains to show that(U + V") is closed
under scalar multiplication. Clearl9,- « € ©(U + V). It suffices to
show that for alle € (U + V'), ax is also ing(U + V), since then,
by addition,x + ax = Sx € (U + V). Butif x € (U + V), then
r = ¢(u+ v) forsomeu € U, v € V. By the homomorphism prop-
erty,o(u+v) = @(u)+p(v).Sincep(U) is GF(4)-linear, there exists
u' € U such thato(u') = ap(u). Likewise, there exists’ € V' such
thate(v') = ap(v). It follows thate (v’ +v') = ap(u)+ap(v) =az
is an elementop(U + V). |

[10]
[11]

(12]
[13]
[14]

[15]

[16]
Lemma7: If U is abinary linear code whose image is @F-linear,

then the codéU|U) = {(u, u):u € U} is GF(4)-linear. Likewise,

the code(0|V) = {(0, v):v € V} is GF(4)-linear. [17]

Lemma 7 is easy to prove by construction. Combining Lemmas 6
and 7 we see thatlf andV” are codes whose images are @k~linear, [18]
then (U|U + V) is a code whose image is GE)-linear. Since all
Reed—Muller codes of length larger than four can be obtained by
applying the(T'|U + V') construction recursively from the codes of
Lemma 5, it follows that the images of all Reed—Muller codes (with bit
ordering obtained from the recursive construction) arg G Hinear.

Now letG(¢(U)) be a generator matrix far(U') andG (¢ (V) be
a generator matrix fop(V), then

Gle(U)) Gle(U))

0 Gle(V)
is clearly a generator matrix fas(U|U + V'), with G(¢(U)) = 0
whenlU = (4,0, —)orU = (4,1, 4), andG(x(U)) = 1 when

REFERENCES

O. Amrani and Y. Be'ery, “Efficient bounded-distance decoding of the
hexacode and associated decoders for the Leech lattice and the Golay
code,”|EEE Trans. Communvol. 44, pp. 534-537, Apr. 1996.

——, “On representing the Nordstrom—Robinson code ove(4GF
Tel-Aviv Univ., Tel-Aviv, Israel, Tech. Rep. EE-S-98-46, Sept. 1998.

] ——, “Bounded-distance decoding: Algorithms, decision regions, and

pseudo nearest neighbordEEE Trans. Inform. Theorwol. 44, pp.
3072-3082, Nov. 1998.

J. H. Conway and V. Pless, “On the enumeration of self-dual codes,”
Combin. Theoryser. A 28, pp. 26-53, 1980.

J. H. Conway and N. J. A. Sloan&phere Packings, Lattices and
Groups New York: Springer-Verlag, 1993.

G. D. Forney, Jr., “Coset codes—Part |: Introduction and geometrical
classification,”|[EEE Trans. Inform. Theoryol. 34, pp. 1123-1151,
Sept. 1988.

——, “Coset codes—Part II: Binary lattices and related coddsFE
Trans. Inform. Theoryol. 34, pp. 1152-1187, Sept. 1988.

G. D. Forney, Jr., N. J. A. Sloane, and M. D. Trott, “The Nord-
strom—Robinson code is the binary image of the OctacodePrat.
DIMACS/IEEE Worksh. Coding and Quantizatioml. 14, 1993, pp.
19-26.

A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and
P. Sole, “TheZ, linearity of Kerdock, Preparata, Goethals, and related
codes,”|EEE Trans. Inform. Theoryol. 40, pp. 301-319, Mar. 1994.

X. Hou, J. T. Lahtonen, and S. Koponen, “The Reed-Muller code
R(r,m) is notZs-linear for3 < r < m — 2,” IEEE Trans. Inform.
Theory vol. 44, pp. 798-799, Mar. 1998.

T. Kasami, T. Takata, T. Fujiwara, and S. Lin, “On the optimum bit orders
with respect to the state complexity of trellis diagrams for binary linear
codes,"IEEE Trans. Inform. Theorwol. 39, pp. 242—-245, Jan. 1993.

F. J. MacWilliams and N. J. A. Sloan&he Theory of Error-Correcting
Codes Amsterdam, The Netherlands: North Holland, 1997.

V. Pless, “Decoding the Golay code$ZEE Trans. Inform. Theoryol.
IT-32, pp. 561-567, July 1986.

R. M. Pyndiah, “Near-optimum decoding of product codes: Block turbo
codes,”|EEE Trans. Communvol. 46, pp. 1003-1010, Aug. 1998.

A. Vardy, “The Nordstrom—Robinson code: Representation ovef4GF
and efficient decoding,T"EEE Trans. Inform. Theoryvol. 40, pp.
1686-1693, Sept. 1994.

—, “Even more efficient bounded-distance decoding of the hexacode,
the Golay code, and the Leech latticESEE Trans. Inform. Theoryol.

41, pp. 1495-1499, Sept. 1995.

A. Vardy and Y. Be'ery, “More efficient soft-decision decoding of the
Golay codes,IEEE Trans. Inform. Theorwol. 37, pp. 667-672, May
1991.

Y. Yuan, C. S. Chen, and S. Ma, “Two-level decoding of (32,16,8)
guadratic residue codeProc. Inst. Elec. Eng. Pt.,1vol. 140, pp.
409-414, 1993.




